Math142 Lecture Notes

1.5 - Rational, Radical, and Power Functions

- Radical/Rational Exponent Functions: $f(x) = \sqrt[b]{[g(x)]^a} = [g(x)]^{a/b}$

 Domain: $(-\infty, \infty)$ if b is odd.
 Domain: x values for which $g(x) \geq 0$ if b is even.

Example 1:

(a) Rewrite $f(x) = \sqrt[8]{8 - 2x}$ as a function with rational exponents and then determine its domain.

(b) Rewrite $g(x) = (4x - 9)^{3/5}$ as a radical function and then determine its domain.

Rational Function: $y = \frac{f(x)}{g(x)}$ where $f(x)$ and $g(x)$ are polynomials with $g(x) \neq 0$.

- Finding Vertical Asymptotes:

 Consider the rational function $h(x) = \frac{f(x)}{g(x)}$ where f and g are polynomials.

 If there is a value c that makes the denominator zero, and NOT the numerator, then the vertical line $x = c$ is a vertical asymptote.

Example 2

(a) Rewrite $f(x) = \frac{x^2 - 3x - 10}{x^2 + 5x + 6}$ in factored form and find any vertical asymptotes.
(b) Rewrite \(f(x) = \frac{x^2 - 5x + 4}{x^2 + 2x - 3} \) in factored form and find any vertical asymptotes.

(c) Find the vertical asymptotes of \(f(x) = \frac{2x}{x - 3} \)

(d) Find any vertical asymptotes of \(g(x) = \frac{2x^2 - 5x - 3}{x^2 - 16} \)

Finding Horizontal Asymptotes:

Consider the rational function \(h(x) = \frac{f(x)}{g(x)} \) where \(f \) and \(g \) are polynomials.

- If the degree of \(f(x) \) is greater than the degree of \(g(x) \), there is **no** horizontal asymptote.
- If the degree of \(f(x) \) is less than the degree of \(g(x) \), the horizontal asymptote is \(y = 0 \).
- If the degrees are equal, the horizontal asymptote is \(y = \frac{a}{b} \) where \(a \) and \(b \) are the coefficients of the leading coefficients.

Example 3: Find the horizontal asymptotes of

(a) \(g(x) = \frac{2x^2 - 5x - 3}{x^2 - 16} \)

(b) \(h(x) = \frac{3x^3 - 2x + 1}{x^2 + 1} \)

(c) \(p(x) = \frac{2x^3 + 1}{x^4 - 2x^3 + 4x^1 - 1} \)
Example 4: Determine the x- and y-intercepts of $g(x) = \frac{2x^2 - 5x - 3}{x^2 - 16}$, the horizontal and vertical asymptotes, and sketch a graph of the function.

Example 5: Use a model of the Laffer curve based on the rational function

$$f(x) = \frac{80x - 8000}{x - 110}, \quad 30 \leq x \leq 100$$

where x represents the tax rate percentage and $f(x)$ represents the government tax revenue in tens of billions of dollars.

(a) Evaluate $f(45)$ and interpret

(b) Find the x-intercept and interpret.

(c) Find the average rate of change for $x = 45$ and $\Delta x = 30$ and interpret.

- Power Function

A function of the form

$$f(x) = a \cdot x^b$$

is called a power function, where a and b are real numbers.
Positive Exponent Power Functions

\[f(x) = a \cdot x^b, \quad \text{with } a > 0 \]

Example 6: The growth of males in the country of Brazil can be modeled by

\[y = 2.20x^{0.333}, \quad 1 \leq x \leq 25 \]

where \(x \) is their age in years, and \(y \) is their height in feet.

a) How tall is the average 20 yr old male in Brazil

b) How old is the average male that is 5’10” from Brazil

Example 7: A slightly banked corner on the highway will safely handle speeds given by the equation:

\[f(x) = \frac{24}{5} \sqrt{x} \]

where \(x \) represents the radius of the corner in feet, and \(f(x) \) represents the speed a car can travel safely in miles per hour.

- a) Evaluate \(f(30) \) and interpret.

- b) If the traffic in that school zone usually averages 25mph, what radius should the corner be?