Math142 Lecture Notes
6.3 - Fundamental Theorem of Calculus

We know from section 6-2 that the area under the curve below was 9 square units.

In addition, we set up the definite integral \(\int_{0}^{3} \frac{2}{3}x + 2 \, dx \) to represent the area. Now let’s find the antiderivative \(F(x) \) of \(f(x) \) and then evaluate \(F(3) - F(0) \).

The Fundamental Theorem of Calculus
If \(f \) is a continuous function defined on a closed interval \([a, b]\) and \(F \) is an antiderivative of \(f \), then

\[
\int_{a}^{b} f(x) \, dx = F(x) \bigg|_{a}^{b} = F(b) - F(a)
\]

Example 1: Evaluate \(\int_{3}^{6} (4x - 2) \, dx \)

Example 2: Find the exact area under \(f(x) = x^2 - 2x + 3 \) on \([1, 3]\).
Values of the definite integral \(\int_a^b f(x) \, dx \) for various functions.

- If \(f(x) \) lies above the \(x \)-axis, \(\int_a^b f(x) \, dx > 0 \).
- If \(f(x) \) lies below the \(x \)-axis, \(\int_a^b f(x) \, dx < 0 \).

If a portion of the graph lies above the \(x \)-axis and another portion below the \(x \)-axis we can compute two different types of areas.

Net Area\(=\int_a^b f(x) \, dx = R_1 + R_2\)

Gross Area\(=\int_a^b f(x) \, dx = R_1 + |R_2|\)

Example 3: Given \(f(x) = |x| - 4 \)

(a) Rewrite \(f(x) \) as a piecewise function.

(b) Determine the \(x \)-intercepts of the graph.

(c) Find the net and gross areas of \(\int_0^9 f(x) \, dx \).
Example 4: The TinyTot Toy Company determines that the marginal cost for producing a new action figure is given by

\[MC(x) = 4 - 0.02x, \quad 0 \leq x \leq 100 \]

where \(x \) is the number of toys made daily and \(MC(x) \) is the marginal cost measured in dollars per toy.

(a) Evaluate \(MC(30) \) and interpret.

(b) Evaluate \(\int_0^{30} MC(x) \) and interpret.
Example 5: Finding distance traveled given velocity functions

The velocity of an object can be modeled by \(v(t) = 12t + 40 \) where \(t \) is the time in seconds and \(v(t) \) is the velocity measured in \(\text{feet per second} \).

a. Find the distance traveled between 5 seconds and 25 seconds.

b. Evaluate \(v(10) \) and interpret.

Example 6: If the rate of change of sales of an item is given by \(S'(t) = 9t^2 + 18t \) where \(t \) is the number of weeks after an advertising campaign has begun, how many items were sold during the third week?