Math142 Lecture Notes
6.1 - Antiderivatives and Indefinite Integrals

Find all possible functions $F(x)$ whose derivative is $f(x) = 2x$.

- $F(x) = x^2$
- $F(x) = x^2 + 5$
- $F(x) = x^2 + \pi$
- $F(x) = x^2 + C$

Definition: Antiderivative

- If $F'(x) = f(x)$, then $F(x)$ is called an antiderivative of $f(x)$.
- If C is any real number constant, then the general antiderivative of f on an interval is $F(x) + C$ if $\frac{d}{dx}[F(x) + C] = f(x)$ for all x in the interval. We use the notation
 \[\int f(x)dx = F(x) + C \]
 to denote $F(x) + C$ as the general antiderivative of $f(x)$.

This is read “The integral of $f(x)$ with respect to x is $F(x) + C$”

Example 1: Determine if the function F is the general antiderivative of the function f.

(a) $F(x) = \frac{2}{3}x^{3/2} + 4x + C$; $f(x) = \sqrt{x} + 4$

(b) $F(x) = 2x^4 - x + C$; $f(x) = \frac{2}{3}x^3 - 1$
Power Rule for Integration
For any real number n, where $n \neq -1$, the indefinite integral of x^n is

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C$$

Example 2: Determine the following indefinite integrals.

(a) $\int x^9 \, dx$

(b) $\int \frac{1}{t^{11}} \, dt$

(c) $\int \sqrt{3} y^2 \, dy$

Other Rules for Integration

- **Constant Rule**

 If k is any real number, then the indefinite integral of k is $\int k \, dx = kx + C$.

- **Sum and Difference Rule**

 For integrable functions f and g, $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$.

- **Coefficient Rule**

 Given any real number coefficient c and integrable function f,

 $$\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx.$$

Example 3: Find the following.

(a) $\int 0.5 \, x^7 \, dx$

(b) $\int (5x - 2) \, dx$
(c) \[\int (4t^4 + 5t - 6) \, dt \]

(d) \[\int \left(x^{5/2} - \frac{4}{x^3} - \sqrt{x} \right) \, dx \]

(e) \[\int \frac{3y^2 - 2y}{6y} \, dy \]

Example 4: The Best Dressed Clothing Company finds that its marginal profit, \(MP \), is linear and has the form \(MP(q) = mq + b \), where \(m,b \) are constants. The company gets about $171 additional profit from producing the 101st sport coat and $169 additional profit from producing the 151st sport coat in each production run.

(a) Determine the marginal profit function \(MP \).

(b) Knowing that the company gets $11,300 profit from 150 sport coats, find the profit function \(P \).
Indefinite Integrals of Basic Functions

- **Power Rule**
 \[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1 \]

- **Rule for \(e^x \)**
 \[\int e^x \, dx = e^x + C \]

- **Rule for Logarithmic Functions**
 \[\int \frac{1}{x} \, dx = \ln |x| + C, \quad x \neq 0 \]

Example 5: Determine the following indefinite integrals.

(a) \[\int \left(\frac{5}{x} - 8e^x \right) \, dx \]

(b) \[\int \frac{x^4 - 5x^2}{x^5} \, dx \]

(c) \[\int \left(\frac{4}{v} + \frac{v}{4} \right) \, dv \]

Example 6: If the marginal cost of producing \(x \) units is given by \(C'(x) = 0.9x^2 + 5x \) and the fixed cost is $5000, find the cost function \(C(x) \) and the cost of producing 25 units.