Exam # 1A
Math 141.502
Fall 2000
(Sections 1.1-1.5, 2.1-2.6, and 3.1)

Name: ____________________________ Student ID: ____________________________

Signature: _______________________

Calculators, pencils and pens are permitted. Additional blank paper will be provided. No other materials may be used on the exam.

There are 5 multiple choice problems, worth 5 points each. There are 5 work out problems. There is one extra credit problem worth a maximum of 3 points.

You will receive 2 extra credit points if you complete the survey on the following page.

Note: Partial credit will be awarded, according to completeness of work. Write the answers, in order, on the blank pages provided. Clearly indicate the solution to each problem.
MULTIPLE CHOICE

1. If the distance between (0,1) and (3,k) is 5, what is k?

 A) 3 B) 0 C) 5 D) -1 E) none of these

 Solution The distance formula gives
 \[
 (3 - 0)^2 + (k - 1)^2 = 25 \\
 9 + (k - 1)^2 = 25 \\
 (k - 1)^2 = 16 \\
 k - 1 = \pm 4 \\
 k = 5, -3
 \]

 So the correct answer is C.

2. What is the equation of a circle, of radius 5, centered on (1,-1)?

 A) \((x - 1)^2 + (y + 1)^2 = 25\) B) \((x + 1)^2 + (y - 1)^2 = 5\)
 C) \((x + 1)^2 + (y - 1)^2 = 25\) D) \((x - 1)^2 + (y + 1)^2 = 5\) E) none of these

 Solution From the formula for a circle,
 \[
 (x - 1)^2 + (y - (-1))^2 = 5^2 \\
 (x - 1)^2 + (y + 1)^2 = 25
 \]

 So the correct answer is A.

3. Find the length of the triangle formed by the three points P=(0,1), Q=(1,2), R=(-2,2)

 A) \(\sqrt{2} + 3 + \sqrt{5}\) B) \(\sqrt{2} + 3 + \sqrt{5}\)
 C) \(\sqrt{2} + \sqrt{3} + \sqrt{5}\) D) \(2 + 3^2 + 5\) E) none of these

 Solution The length of PQ is \(\sqrt{2}\), QR is 3, RP is \(\sqrt{5}\), so the correct answer is B.

4. The equation of the line passing through (1,3) and (-2,-1) is

 A) \(3y = 4x + 5\) B) \(4x + 3y + 5 = 0\)
 C) \(y = \frac{4}{3}x + 5\) D) \(y = -\frac{1}{3}x + \frac{5}{3}\) E) none of these

 Solution The slope of the line through these points is \(\frac{3 - (-1)}{1 - (-2)} = \frac{4}{3}\), so the equation is given by
 \[
 \frac{y - 3}{x - 1} = \frac{4}{3} \\
 3(y - 3) = 4(x - 1) \\
 3y - 9 = 4x - 4 \\
 3y = 4x + 5
 \]

 So the correct answer is A.
5. A car worth $25,000.00 initially is depreciated linearly over 7 years. If it has a scrap value (at the end of 7 years) of $2,000.00, what is it worth after 4 years?

A) $10,714 B) $11,857 C) $12,500 D) $17,000 E) none of these

Solution The slope of the depreciation curve is given by

\[
\frac{25 - 2}{0 - 7} = -\frac{23}{7}
\]

The intercept is (0,25), so the equation of the line is

\[y = 25 - \frac{23}{7}x\]

When \(x = 4\), \(y = 11,857.14\), so the correct answer is B.

WORKOUT

1. [20 pts] Based on a survey of retailers, it is estimated that 1000 people will buy a color TV priced at $195.00. For every $10.00 the price drops, and additional 50 people will buy it. Suppliers will not ship the TV if the price drops below $150.00, but for every $10.00 increase in price, they will ship an additional 200 units.

 (a) Find the supply function \(S(x)\)

 (b) Find the demand function \(D(x)\)

 (c) Find the market equilibrium

Solution The slope of the demand curve is given by

\[
\frac{195 - 185}{1000 - 1050} = \frac{10}{-50} = -\frac{1}{5}
\]

so the equation of the demand curve is given by

\[
\frac{p - 185}{x - 1050} = -\frac{1}{5}
\]

so

\[p - 185 = -\frac{1}{5}(x - 1050)\]

\[p = -\frac{1}{5}x + 395\]

The slope of the supply curve is given by

\[
\frac{160 - 150}{200 - 0} = \frac{10}{200} = -\frac{1}{20}
\]

so the equation of the supply curve is given by

\[
\frac{p - 150}{x - 0} = \frac{1}{20}
\]

so

\[p - 150 = \frac{1}{20}(x)\]

\[p = \frac{1}{20}x + 150\]
A sketch of the supply and demand curves, along with their intersection, is given below.

2. [15 pts] Use reverse shading to indicate the region defined by

\[x > 0 \\
\]
\[y > 0 \\
\]
\[x \neq y \]
\[y < 3 \\
\]
\[y > x \]

Solution
3. [15 pts] Given the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>12</td>
<td>15</td>
<td>18</td>
</tr>
</tbody>
</table>

(a) What is linear equation which best fits this data?
(b) If x=10, what is the predicted value of y?
(c) If x=50, what is the predicted value of y?

Solution

(a) Entering the x values into \(L_1 \) and the y-values into \(L_2 \), then using the TI83 function LinReg(ax+b), we get \(a = 0.4955 \) and \(b = 4.2381 \).

(b) When x=10, the regression line predicts \(y = 0.4955 \times 10 + 4.2381 = 9.1931 \)

(c) When x=50, the regression line predicts \(y = 0.4955 \times 50 + 4.2381 = 29.0131 \)

4. [15 pts] Given the augmented matrix below, use the TI83 program ROWOPS to fill in the missing entries:

\[
\begin{bmatrix}
1 & 3 & 2 & 4 \\
2 & 0 & 0 & 5 \\
3 & -3 & 2 & 6
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 3 & 2 & 4 \\
0 & X & X & X \\
0 & X & X & X
\end{bmatrix}
\]

Solution Applying the TI83 program "ROWOPS", or doing the row reduction by hand, we get

\[
\begin{bmatrix}
1 & 3 & 2 & 4 \\
0 & -6 & -4 & -3 \\
0 & -12 & -4 & -6
\end{bmatrix}
\]

5. [10 pts] Given the system

\[
\begin{align*}
2x_1 - x_2 - x_3 &= 0 \\
3x_1 + 2x_2 + x_3 &= 7 \\
x_1 + 2x_2 + 2x_3 &= 5
\end{align*}
\]

(a) write the system as a matrix equation \([A]x = b\).
(b) solve the system, using \([A]^{-1}\).

Solution

(a) In terms of matrices,

\[
\begin{bmatrix}
2 & -1 & -1 \\
3 & 2 & 1 \\
1 & 2 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
0 \\
7 \\
5
\end{bmatrix}
\]

(b) Using the inverse of \([A]\),

\[
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
2 & -1 & -1 \\
3 & 2 & 1 \\
1 & 2 & 2
\end{bmatrix}^{-1} \begin{bmatrix}
0 \\
7 \\
5
\end{bmatrix} = \begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}
\]
6. [3 pts EXTRA CREDIT] If

\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
x & y \\
z & w \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
\]

What are the values of \{x, y, z, w\}? \textbf{You must show your work!}

\textbf{Solution} The simplest way to solve this is to just apply the inverse of the left matrix

\[
\begin{bmatrix}
x & y \\
z & w \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}
=
\begin{bmatrix}
-1 & -1 \\
1 & 1 \\
\end{bmatrix}
\]