1. (20) Define the following terms:

(a) Statement (in the context of logic)
 A statement is a declarative sentence, which is either true or false.

(b) The Cartesian product of two sets \(A \) and \(B \).
 The Cartesian product of \(A \) and \(B \) is
 \[A \times B = \{ (a, b) : a \in A \text{ and } b \in B \} \]

(c) For each \(\alpha \in \Lambda \), let \(A_\alpha \) be a set. Define \(\cap_{\alpha \in \Lambda} A_\alpha \).
 This set is defined as
 \[\cap_{\alpha \in \Lambda} A_\alpha = \{ x : x \in A_\alpha \text{ for each } \alpha \in \Lambda \} \]

(d) If \(P \) and \(Q \) are statements, define the statement \(P \implies Q \). Note: a truth table is much preferred.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

2. (15) State Peano’s axioms, and give an example of a set that does not satisfy these axioms.

The axioms are posted on the web page for this course. An example of a set that does not satisfy the axioms is \(S = \{ a \} \). Since there is not a second element in this set \(a + 1 \) is not defined, so \(S \) does not satisfy the axioms.

3. (20) For each of the statements below decide if they are true or false. If a statement is true prove it, and if it’s false supply a counter example.

(a) \(A \cup B = A \cap B \).
 This statement is false. An example to demonstrate this is: set the universal set equal to \(N \) the natural numbers. Set \(A = \{ 1 \} \) and \(B = \{ 2 \} \). Then \(\overline{A \cup B} = \{ 3, 4, \cdots \} \), and \(A \cap B = \emptyset \).

(b) \(P \implies Q \) is logically equivalent to \(P \land (\neg Q) \).
 This statement is false. If you look at the truth tables for these two statements this becomes clear

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
</tbody>
</table>
4. (15) Use induction to verify the formula

\[\sum_{i=1}^{n} (2i - 1) = n^2. \]

Set \(P = \left\{ n \in N : \sum_{i=1}^{n} (2i - 1)^2 = n^2 \right\} \). To see that \(1 \in P \), we evaluate both sides of the formula with \(n = 1 \). The RHS equals 1, and the LHS equals

\[\sum_{i=1}^{1} (2i - 1) = (2 - 1) = 1. \]

Thus, \(1 \in P \). Assume that \(n \in P \). Then we have

\[
\sum_{i=1}^{n+1} (2i - 1) = \sum_{i=1}^{n} (2i - 1) + (2n + 1) = n^2 + 2n + 1 = (n+1)^2.
\]

Thus, \(n + 1 \in P \), and the induction axiom tells us that \(P = N \).

5. (10) Let \(A \) be a set, and let \(P(A) \) denote the power set of \(A \). Let \(|A| \) denote the number of elements in the set \(A \).

(a) If \(A = \{1, q, 5\} \), what is \(P(A) \).

\[P(A) = \{\emptyset, \{1\}, \{q\}, \{5\}, \{1, q\}, \{1, 5\}, \{5, q\}, \{1, q, 5\}\}. \]

(b) Prove the following formula

\[|P(A)| = 2^{|A|}. \]

One way to prove this is by induction. So let

\[P = \left\{ n \in N : |P(A)| = 2^{|A|}, \text{ where } |A| = n \right\}. \]

It is easy to see that \(1 \in P \). So assume that \(n \in P \). Let \(A \) be a set with \(n + 1 \) elements. Denote one of these elements by \(a \). Any subset of \(A \) either contains the element \(a \) or it doesn’t. The number of subsets that do not contain \(a \) are the same as the number of subsets of a set with \(n \) elements. By the assumption that \(n \in P \), there are \(2^n \) such subsets. Any subset of \(A \) that contains \(a \) can be obtained by adding \(a \) to a subset of \(A \) that does not contain \(a \); there are \(2^n \) such subsets. Thus, the number of subsets of \(A \) equals

\[|P(A)| = 2^n + 2^n = 2^{n+1}, \]

and we see that \(n + 1 \in P \). By induction axiom we have \(P = N \).
6. (20) A function \(f(x) \) is said to be ambivalent with respect to \(l \) at the point \(x = a \) if

\[
\forall \epsilon > 0, \forall \delta > 0, \exists x_1 \text{ and } \exists x_2 \text{ such that } \\
|x_1 - a| < \delta, \; |x_2 - a| < \delta, \; |f(x_1) - l| < \epsilon \text{ and } |f(x_2) - l| > \epsilon
\]

(a) What does it mean to say that \(f \) is not ambivalent with respect to \(l \) at the point \(a \).

\[
\exists \epsilon > 0, \exists \delta > 0, \forall x_1 \text{ and } \forall x_2 \\
|x_1 - a| \geq \delta, \text{ or } |x_2 - a| \geq \delta, \text{ or } |f(x_1) - l| \geq \epsilon, \text{ or } |f(x_2) - l| \leq \epsilon
\]

(b) Find, if possible, an example of a function \(f \) that is ambivalent with respect to \(2 \) at the point \(x = 1 \).

The condition \(|f(x_1) - l| \geq \epsilon \) implies that \(f \) must take on values arbitrarily far from \(l \), as well as taking on value arbitrarily close to \(l \). So let's try

\[
f(x) = \begin{cases} \\
2, & x = 1 \\
\frac{1}{x - 1}, & x \neq 1
\end{cases}
\]

Then for any \(\epsilon > 0 \) set \(x_1 = 1 \). Then we have

\[
|x_1 - 1| = 0 < \delta \text{ and } |f(x_1) - l| = |2 - 2| = 0 < \epsilon
\]

To see that we can find a value \(x_2 \) that satisfies the other two conditions, note that the expression \(\frac{1}{x - 1} \) can be made arbitrarily large by picking \(x \) close to 1. So for any \(\epsilon \) and \(\delta \), which are positive pick \(x_2 \) so that

\[
0 < x_2 - 1 < \min \{ \delta, 1/\epsilon, 1 \}.
\]

For such a number we have

\[
|x_2 - a| = |x_2 - 1| = x_2 - 1 < \delta \text{ and } \\
|f(x_2) - l| = \left| \frac{1}{x_2 - 1} - 2 \right| \\
= \left| \frac{3 - 2x_2}{x_2 - 1} \right| > \frac{|3 - 2x_2|}{1/\epsilon} \\
= \epsilon |3 - 2x_2| > \epsilon
\]

Note, since \(0 < x_2 - 1 < 1 \), we have \(|3 - 2x_2| > 1 \).