1. (15) Define the following

(a) \(f(x, y) \) is differentiable at the point \((1, -2)\).

This means that both of \(f \)'s partial derivatives exist at the point \((1, -2)\), and for \(\Delta x \) and \(\Delta y \) small enough we have

\[
f(1 + \Delta x, -2 + \Delta y) = f(1, -2) + \left. \frac{\partial f}{\partial x} \right|_{(1, -2)} \Delta x + \left. \frac{\partial f}{\partial y} \right|_{(1, -2)} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,
\]

where

\[
\lim_{(\Delta x, \Delta y) \to (0,0)} \epsilon_i = 0, \text{ for } i = 1 \text{ or } 2.
\]

(b) \(\left. \frac{\partial f}{\partial x} \right|_{(2, 3)} \)

\[
\left. \frac{\partial f}{\partial x} \right|_{(2, 3)} = \lim_{h \to 0} \frac{f(2 + h, 3) - f(2, 3)}{h}
\]

(c) What do the spherical variables \(\rho, \theta, \) and \(\phi \) represent?

If \((x, y, z)\) are the Cartesian coordinates of a point \(P \), then \(\rho = \sqrt{x^2 + y^2 + z^2} \), the distance of \(P \) to the origin. The variable \(\phi, 0 \leq \phi \leq \pi \) is the smaller of the two angles the line joining the origin to the point \(P \) makes with the positive \(z \)-axis, and the variable \(\theta, 0 \leq \theta \leq 2\pi \) is the angle the line in the \(x-y \) plane from the origin to the point \((x, y, 0)\) makes with the positive \(x \)-axis, with a counter clockwise direction being positive.
2. (15) The coordinates of a point in one coordinate system are given, find the coordinates of that point in the coordinate system specified.

(a) $(1, -2)$ are the Cartesian coordinates (x, y) of a point, find its polar coordinates.

\[r = \sqrt{5}, \; \theta = \tan^{-1}(-2) \]

(b) $(1, 1, 2)$ are the spherical coordinates (ρ, θ, ϕ) of a point, find its cylindrical coordinates.

\[r = \rho \sin \phi = \sin 2 \approx 0.909 \]
\[\theta = 1 \]
\[z = \rho \cos \phi = \cos 2 \approx -0.416 \]

(c) $(1, 1, 2)$ are the Cartesian coordinates of a point in \mathbb{R}^3. What are its spherical coordinates?

\[\rho = \sqrt{6} \]
\[\theta = \tan^{-1} 1 = \frac{\pi}{4} \]
\[\phi = \cos^{-1} \left(\frac{2}{\sqrt{6}} \right) \approx 0.615 \]
3. (30) The iterated integral \(\int_1^4 dy \int_y^{y^2} dx \) has a value equal to the area of a region \(D \) in \(\mathbb{R}^2 \).

(a) Sketch the region \(D \).

(b) Express the area of the region \(D \) by interchanging the order of integration in the given iterated integral.

\[
\int_1^4 dy \int_y^{y^2} dx = \int_1^4 dx \int_x^{x^2} dy + \int_4^{16} dx \int_{\sqrt{x}}^4 dy
\]

(c) What is the area of \(D \)?

\[
\text{area}(D) = \int_1^4 dy \int_y^{y^2} dx
\]

\[
= \int_1^4 (y^2 - y) \ dy = \frac{y^3}{3} - \frac{y^2}{2} \bigg|_1^4
\]

\[
= \left(\frac{4^3}{3} - \frac{4^2}{2} \right) - \left(\frac{1^3}{3} - \frac{1^2}{2} \right)
\]

\[
= \frac{27}{2}
\]
(d) Consider the transformation \(v = y \) and \(u = \frac{y}{\sqrt{x}} \). Let \(\hat{D} \) denote the image of \(D \) under this transformation. Sketch the region \(\hat{D} \).

\[
\begin{align*}
v & = y \\
u & = \frac{y}{\sqrt{x}}
\end{align*}
\]

(e) Compute \(\frac{\partial (x, y)}{\partial (u, v)} \)

First we write \(x \) and \(y \) as functions of \(u \) and \(v \). This gives us \(y = v \) and

\[
x = \frac{y^2}{u^2} = \frac{v^2}{u^2}.
\]

Thus, we have

\[
\frac{\partial (x, y)}{\partial (u, v)} = \det \begin{bmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{bmatrix} = \det \begin{bmatrix} \frac{-2v^2}{u^3} & \frac{2u}{v} \\ 0 & 1 \end{bmatrix} = \frac{-2v^2}{u^3}
\]

(f) Express \(\iint_D xy \, dA \) as an iterated integral over the region \(\hat{D} \).

\[
\iint_D xy \, dA = \int_1^4 dv \int_1^{\sqrt{v}} \frac{v^2}{u^2} \, v \left| \frac{-2v^2}{u^3} \right| \, du = \int_1^4 dv \int_1^{\sqrt{v}} \frac{2v^5}{u^3} \, du
\]
4. (20) The curve \(r = 1 + \sin \theta \), where \(r \) and \(\theta \) represent the polar coordinates of a point in \(\mathbb{R}^2 \), encloses a region \(D \) in \(\mathbb{R}^2 \).

(a) Sketch the region \(D \).

(b) Set up an integral whose value equals the area of \(D \). Note: your answer should be an iterated integral.

\[
\text{area of region} = \int_0^{2\pi} \int_0^{1+\sin \theta} r \, dr \, d\theta
\]

(c) What is the slope of the tangent line to this curve when \(\theta = 0 \)?

One way to do this is to describe the curve parametrically

\[
\Gamma(\theta) = (x(\theta), y(\theta)) = (r(\theta) \cos \theta, r(\theta) \sin \theta)
\]

\[
= ((1 + \sin \theta) \cos \theta, (1 + \sin \theta) \sin \theta)
\]

\[
= (\cos \theta + \sin \theta \cos \theta, \sin \theta + \sin^2 \theta)
\]

Then the slope of the tangent line is given by

\[
\frac{dy}{d\theta} = \frac{d}{d\theta} \left(\sin \theta + \sin^2 \theta \right)
\]

\[
= \frac{\cos \theta + \sin 2\theta}{\cos 2\theta - \sin \theta}
\]

Setting \(\theta = 0 \) in the above expression we have

\[
slope = \frac{1}{1} = 1.
\]
5. (20) Let E denote the region in \mathbb{R}^3 that is bounded below by the plane $z = 1$ and above by the sphere $x^2 + y^2 + z^2 = 4$.

(a) If $m(x, y, z) = 1 + x^2 - z$ denotes the mass per unit volume of the region E. Set up an iterated integral whose value is the total mass of this region.

The projection of this region onto the x/y plane is the disk centered at the origin of radius $\sqrt{3}$. It seems easiest to integrate over this region by using cylindrical coordinates. Thus,

$$ \text{total mass} = \iiint_E (1 + x^2 - z) \, dV $$

$$ = \int_0^{2\pi} \, d\theta \int_0^{\sqrt{3}} \, r \, dr \int_1^{\sqrt{4-r^2}} \left(1 + (r \cos \theta)^2 - z \right) \, dz $$

$$ = \frac{3\pi}{10} $$

(b) Find the total surface area of this region. Note: if your answer involves an iterated integral, this integral does not have to be evaluated.

The surface consists of two separate parts. The bottom which is a disk of radius $\sqrt{3}$, and the top which is that part of the sphere lying above the $z = 1$ plane. The area of the bottom part is 3π. The area of the top part is given by the integral below (D denotes the disk of radius $\sqrt{3}$ centered at the origin

$$ \int \int_D \sqrt{1 + (f_x)^2 + (f_y)^2} \, dA, $$

where f is the z value of a point on the top half of the sphere whose equation is $x^2 + y^2 + z^2 = 4$. Differentiating implicitly we derive

$$ f_x = -\frac{x}{z} \quad \text{and} \quad f_y = -\frac{y}{z}. $$

Thus, the area of the top part is

$$ \int \int_D \sqrt{1 + (f_x)^2 + (f_y)^2} \, dA = \int \int_D \sqrt{1 + \frac{x^2}{z^2} + \frac{y^2}{z^2}} \, dA $$

$$ = \int \int_D \frac{4}{z^2} \, dA $$

$$ = \int_0^{2\pi} \, d\theta \int_0^{\sqrt{3}} \frac{2r}{\sqrt{4-r^2}} \, dr. $$

So the total surface area equals

$$ 3\pi + \int_0^{2\pi} \, d\theta \int_0^{\sqrt{3}} \frac{2r}{\sqrt{4-r^2}} \, dr = 3\pi + 4\pi = 7\pi $$