1. (30) Define the following:

(a) \(\lim_{(x, y) \to (-2, 1)} f(x, y) = 5 \)

This means that for any \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that if \(0 < \| (x, y) - (-2, 1) \| < \delta \), then \(|f(x, y) - 5| < \varepsilon \).

(b) the directional derivative of \(f \) at the point \((2, 3)\) in the direction \((1, 1)\)

Since the unit normal in the direction \((1, 1)\) is \((1/\sqrt{2}, 1/\sqrt{2})\), the directional derivative equals

\[
\lim_{h \to 0} \frac{f(2 + h/\sqrt{2}, 3 + h/\sqrt{2}) - f(2, 3)}{h}.
\]

(c) \(f(x, y) \) is differentiable at the point \((5, 7)\)

This means that there are numbers \(\epsilon_1 \) and \(\epsilon_2 \) such that

\[
f(5 + \Delta x, 7 + \Delta y) = f(5, 7) + \frac{\partial f}{\partial x}(5, 7) \Delta x + \frac{\partial f}{\partial y}(5, 7) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,
\]

where both \(\epsilon_1 \) and \(\epsilon_2 \) approach 0 as \((\Delta x, \Delta y) \to (0, 0)\).

(d) the spherical variables \(\rho, \theta, \) and \(\phi \)

If \(P \) is a point in \(\mathbb{R}^3 \), then the spherical coordinates of \(P \) represent

\[
\rho = \text{distance of } P \text{ from the origin} = \sqrt{x^2 + y^2 + z^2}, \text{ where } (x, y, z) \text{ are the Cartesian coordinates of } P
\]

\[
\phi = \text{angle that line from origin to } P \text{ makes with the positive } z \text{ axis, } 0 \leq \phi \leq \pi
\]

\[
\theta = \text{usual polar angle. That is, the point } \hat{P} = (x, y, 0) \text{, which is the projection of } P \text{ onto the } x,y \text{ plane, has the polar coordinates } r \text{ and } \theta, \text{ where } \theta \text{ is the angle the line from the origin to the point } \hat{P} \text{ makes with the positive } x \text{ axis, with } \theta \text{ lying between } 0 \text{ and } 2\pi.
\]

(e) the flux of a force field \(F \) across a surface \(S \)

This is the surface integral of the scalar normal component of \(\vec{F} \) over the surface \(S \).
2. (25) Let \(f(x, y, z) = 2xy - z + yz^2 \).

(a) Compute the directional derivative of \(f \) at the point \((1, 1, 2)\) in the direction \(\vec{N} = (5, 0, -1) \).

The gradient of \(f \) equals \(\nabla f = (2y, 2x + z^2, 2yz - 1) \), and its value at the point \((1, 1, 2)\) is \((2, 6, 3)\). The directional derivative equals

\[
Df = \nabla f \bigg|_{(1,1,2)} \cdot \frac{(5,0,-1)}{\sqrt{26}} \\
= (2,6,3) \cdot \frac{(5,0,-1)}{\sqrt{26}} \\
= \frac{7}{\sqrt{26}}
\]

(b) Find an equation for the tangent plane to the surface \(f = 4 \) at the point \((1, 1, 2)\).

\[
(x - 1, y - 1, z - 2) \cdot (2,6,3) = 0,
\]

or

\[
2x + 6y + 3z = 14
\]

(c) What is the rate of change of \(f \) at the point \((1, 1, 2)\) along any direction tangent to the plane of part b?

Since any of these tangent directions is perpendicular to the gradient of \(f \) at that point, all of these directional derivatives will equal 0.

3. (10) A force field, \(\vec{F} \), is said to be conservative if there is a scalar valued function \(\phi \) such that \(\nabla \phi = \vec{F} \). Let \(C \) denote any path with \(P \) and \(Q \) the beginning and terminal points of the path. Explain why the line integral of the tangential component of \(F \) along the path \(C \) depends only on \(\phi \). That is, explain the formula

\[
\int_C \vec{F} \cdot d\vec{r} = \phi (Q) - \phi (P).
\]

Let \(\Gamma (t) = (x(t), y(t), z(t)) \) for \(a \leq t \leq b \) be any parametrization of the curve \(C \), such that \(\Gamma (a) = P \) and \(\Gamma (b) = Q \). Then we have

\[
\int_C \vec{F} \cdot d\vec{r} = \int_a^b (\phi_x(x(t), y(t), z(t)), \phi_y, \phi_z) \cdot (x', y', z') \ dt \\
= \int_a^b \left[\frac{d}{dt} \phi(\Gamma (t)) \right] dt = \phi (\Gamma (b)) - \phi (\Gamma (a)) \\
= \phi (Q) - \phi (P).
\]
4. (25) Let \(S \) be the rectangular region in the \(x, z \) plane that is bounded by the lines \(x = 2, \) \(x = 0, \) \(z = 0, \) \(z = 1 \). Let \(\vec{F} = (xy - z, x + 2z, \cos xy) \).

(a) \(\text{curl} \vec{F} = \)

\[
\text{curl} \vec{F} = \det \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
\partial_x & \partial_y & \partial_z \\
xy - z & x + 2z & \cos xy
\end{vmatrix}
\]

\[
= (-x \sin xy - 2, -1 + y \sin xy, 1 - x)
\]

(b) Compute the flux of \(\text{curl} \vec{F} \) crossing the surface \(S \) in the direction of increasing \(y \) directly from the definition of flux as a surface integral.

\[
\iint_S \text{curl} \vec{F} \cdot dS = \iint_S (-2, -1, 1 - x) \cdot (0, 1, 0) \ dS
\]

\[
= \iint_S (-1) \ dS = -\text{area} (S)
\]

\[
= -2
\]

(c) Compute the flux of \(\text{curl} \vec{F} \) crossing the surface \(S \) in the direction of increasing \(y \) by using Stoke’s theorem.

Stoke’s theorem says that \(\iiint_S \text{curl} \vec{F} \cdot dS = \oint_{\partial S} \vec{F} \cdot d\vec{r} \), where the path that is the boundary of \(S \) is traced out in a direction compatible with the normal direction used in computing the surface integral. To use Stokes theorem in this problem we note that the normal direction is in the positive \(y \) direction so if we look at \(S \) from the positive \(y \) axis the direction of integration around the boundary of \(S \) must be in the counter clockwise direction.

Let \(C_1 \) represent that part of the boundary of \(S \) for which \(z = 0, \) \(C_2 \) for \(x = 0, \) \(C_3 \) for \(z = 1, \) and \(C_4 \) for \(x = 2. \) Then we have

\[
\iint_S \text{curl} \vec{F} \cdot dS = \oint_{\partial S} \vec{F} \cdot d\vec{r} = \oint_{C_1} \vec{F} \cdot d\vec{r} + \oint_{C_2} \vec{F} \cdot d\vec{r} + \oint_{C_3} \vec{F} \cdot d\vec{r} + \oint_{C_4} \vec{F} \cdot d\vec{r}
\]

\[
= \int_2^0 (0, x, 1) \cdot (dx, 0, 0) + \int_0^1 (-z, 2z, 1) \cdot (0, 0, dz)
\]

\[
+ \int_0^2 (-1, x + 2, 1) \cdot (dx, 0, 0) + \int_1^0 (-z, 2 + 2z, 1) \cdot (0, 0, dz)
\]

\[
= \int_2^0 dx + \int_0^1 dz + \int_0^2 (-1) dx + \int_1^0 dz
\]

\[
= -2
\]
5. (20) Let C denote the curve that is the intersection of the surfaces $x^2 + y^2 + z = 9$ and $z = 5$. Let $f(x, y, z) = x + y - 2z$.

(a) Find all critical points of f.

The critical points of f are those points where the gradient of f either does not exist or it equals $\mathbf{0}$. Since f is a polynomial its gradient exists everywhere, so (x, y, z) is a critical point of f only if $\nabla f = \mathbf{0}$ at that point.

$$\nabla f = (1, 1, -2)$$

This can never be zero so f has no critical points.

(b) Find the maximum value that the function f attains on the curve C.

Use the Lagrange multiplier technique and find a solution to the equations

$$\nabla f + \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 = (0, 0, 0)$$

$$g_1 = x^2 + y^2 + z = 9$$
$$g_2 = z = 5.$$

The first equation is equivalent to the following equations

$$1 + 2\lambda_1 x = 0$$
$$1 + 2\lambda_1 y = 0$$
$$-2 + \lambda_1 + \lambda_2 = 0.$$

Thus, we have $x = \frac{-1}{2\lambda_1} = y$. Since x, y, z must satisfy $g_1 = 0$, and $z = 5$, λ_1 satisfies

$$\frac{1}{4\lambda_1^2} + \frac{1}{4\lambda_1^2} = 4$$
$$\frac{1}{4\lambda_1^2} = 2$$
$$\frac{1}{2\lambda_1} = \pm \sqrt{2}$$

So we have $x = y = \pm \sqrt{2}$. Thus, the maximum value of f on the curve C occurs at $(\sqrt{2}, \sqrt{2}, 5)$ or at $(-\sqrt{2}, -\sqrt{2}, 5)$, and

$$f \left(\sqrt{2}, \sqrt{2}, 5\right) = 2\sqrt{2} - 10$$
$$f \left(-\sqrt{2}, -\sqrt{2}, 5\right) = -2\sqrt{2} - 10$$

Hence the maximum value of f on the curve C is $2\sqrt{2} - 10$.

4
6. (40) Let S denote the surface that encloses the region E, in \mathbb{R}^3, which is bounded by $x = 0$, $y = 0$, $z = 0$, and $z = 9 - x^2 - y^2$. Let S_1, S_2, and S_3 denote those parts of S that lie in the planes $x = 0$, $y = 0$, and $z = 0$ respectively, and let S_4 denote the remaining part of S. Let $\vec{F}(x, y, z) = (x, y, -z)$.

The region E is shown below:

(a) Find the volume of E.

$$
\text{volume } (E) = \iiint_E dV = \int_0^{\pi/2} \int_0^3 r \, dr \int_0^{9-r^2} dz = \frac{\pi}{2} \int_0^3 (9r - r^3) \, dr = \frac{\pi}{2} \left(\frac{9r^2 - r^4}{4} \right) \bigg|_0^3 = 81\pi \frac{8}{8}
$$

(b) Find the area of S_4.

The surface S_4 is the graph of the function $f(x, y) = 9 - x^2 - y^2$ for $x^2 + y^2 \leq 9$. Thus, the area of S_4 equals

$$\text{area } (S_4) = \iint_D \sqrt{1 + 4x^2 + 4y^2} \, dA = \int_0^{\pi/2} \int_0^3 r \sqrt{1 + 4r^2} \, dr = \frac{\pi}{2} \left(\frac{37\sqrt{37} - 1}{12} \right)$$
(c) Find the outward flux of \mathbf{F} across each of the surfaces S_1, S_2, and S_3.

The flux of \mathbf{F} across these surfaces equals

$$\text{flux} (S_1: x = 0) = \int \int_{S_1} \mathbf{F} \cdot d\mathbf{S} = \int \int_{S_1} (0, y, -z) \cdot (-1, 0, 0) \ dS = 0$$

$$\text{flux} (S_2: y = 0) = \int \int_{S_2} \mathbf{F} \cdot d\mathbf{S} = \int \int_{S_1} (x, 0, -z) \cdot (0, -1, 0) \ dS = 0$$

$$\text{flux} (S_3: z = 0) = \int \int_{S_3} \mathbf{F} \cdot d\mathbf{S} = \int \int_{S_1} (x, y, 0) \cdot (0, 0, -1) \ dS = 0$$

(d) Use the divergence theorem to find the outward flux of \mathbf{F} across the surface S, and deduce what the outward flux of \mathbf{F} across S_4 must equal.

The total outward flux across the surface S equal

$$\text{flux} (S) = \int \int_{S} \mathbf{F} \cdot d\mathbf{S} = \int \int \int_{E} \text{div} \left(\mathbf{F} \right) \ dV$$

$$= \int \int \int_{E} dV = \text{volume} (E) = \frac{81\pi}{8}.$$

The outward flux across the surface S_4 plus the sums of the outward fluxes across all of the other surfaces making up the surface S must equal the total outward flux. Thus,

$$\text{flux} (S_4) = \text{flux} (S) - \text{flux} (S_1) - \text{flux} (S_2) - \text{flux} (S_3)$$

$$= \frac{81\pi}{8}$$