Multiple Choice: (4 points each)

1. Compute \(\int_0^{\pi/2} x \cos(3x) \, dx \)
 a. \(-\frac{\pi}{6} - \frac{1}{3} \)
 b. \(-\frac{\pi}{3} - \frac{1}{3} \)
 c. \(-\frac{\pi}{3} + \frac{1}{3} \)
 d. \(-\frac{\pi}{6} - \frac{1}{9} \) correct choice
 e. \(-\frac{\pi}{3} + \frac{1}{9} \)

Integrate by parts with \(u = x \) \(dv = \cos(3x) \, dx \)
 \(du = dx \) \(v = \frac{1}{3} \sin(3x) \)

\[
\int_0^{\pi/2} x \cos(3x) \, dx = \left[\frac{x}{3} \sin(3x) - \frac{1}{3} \int \sin(3x) \, dx \right]_0^{\pi/2} = \left[\frac{x}{3} \sin(3x) + \frac{1}{9} \cos(3x) \right]_0^{\pi/2}
\]

\[
= \frac{\pi}{6} \sin\left(\frac{3\pi}{2}\right) - \frac{1}{9} \cos(0) = -\frac{\pi}{6} - \frac{1}{9}
\]

2. Compute \(\lim_{n \to \infty} \frac{2^n}{1 + 3^n} \)
 a. 0 correct choice
 b. \(\frac{1}{2} \)
 c. \(\frac{1}{1 - \frac{2}{3}} \)
 d. \(\frac{1}{2} \)
 e. \(\frac{1}{1 - \frac{2}{3}} \)

\[
\lim_{n \to \infty} \frac{2^n}{1 + 3^n} = \lim_{n \to \infty} \frac{2^n}{\frac{3^n}{3^n} + 1} = \frac{0}{1} = 0
\]

3. Compute \(\int_0^{\pi/2} \sin^3 \theta \, d\theta \)
 a. \(-\frac{2}{3} \)
 b. \(-\frac{1}{3} \)
 c. 0
 d. \(\frac{1}{3} \)
 e. \(\frac{2}{3} \) correct choice

Let \(u = \cos \theta \). Then \(du = -\sin \theta \, d\theta \). So:

\[
\int_0^{\pi/2} \sin^3 \theta \, d\theta = \int_0^{\pi/2} (1 - \cos^2 \theta) \sin \theta \, d\theta = -\int_1^0 (1 - u^2) \, du
\]

\[
= -\left[u - \frac{u^3}{3} \right]_1^0 = -0 + \left[1 - \frac{1}{3} \right] = \frac{2}{3}
\]
4. Which formula will give the arclength of the curve \(y = \sin x \) between \(x = 0 \) and \(x = \pi \)?

 a. \(L = \int_{0}^{\pi} 2\pi x \sqrt{1 + \cos^2 x} \, dx \)
 b. \(L = \int_{0}^{\pi} \sqrt{1 + \cos^2 x} \, dx \) \(\text{correct choice} \)
 c. \(L = \int_{0}^{\pi} 2\pi \sin x \sqrt{1 + \cos^2 x} \, dx \)
 d. \(L = \int_{0}^{\pi} 2\pi x \sqrt{1 + \sin^2 x} \, dx \)
 e. \(L = \int_{0}^{\pi} \sqrt{1 + \sin^2 x} \, dx \)

\[
\frac{dy}{dx} = \cos x \quad L = \int_{0}^{\pi} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_{0}^{\pi} \sqrt{1 + \cos^2 x} \, dx
\]

5. Which initial value problem describes the solution to the following problem:
A 100 gal tank is initially filled with sugar water whose concentration is \(0.05 \) lb sugar gal water. Sugar is added to the tank at the rate of \(2 \text{ lb} \text{ hr}^{-1} \) and pure water is added at the rate of \(3 \text{ gal} \text{ hr}^{-1} \). The mixture is kept well mixed and drained at the rate of \(3 \text{ gal} \text{ hr}^{-1} \). Find the amount of sugar in the tank after \(t \) hours.

 a. \(\frac{dS}{dt} = 2 - 0.03S, \quad S(0) = 5 \) \(\text{correct choice} \)
 b. \(\frac{dS}{dt} = 0.1 - 0.15S, \quad S(0) = 5 \)
 c. \(\frac{dS}{dt} = 3S - 0.02, \quad S(0) = 0.05 \)
 d. \(\frac{dS}{dt} = 0.02 - 3S, \quad S(0) = 5 \)
 e. \(\frac{dS}{dt} = 0.02 - 0.03S, \quad S(0) = 0.05 \)

\[
\frac{dS}{dt} \text{ lb} \text{ hr}^{-1} = \frac{2 \text{ lb} \text{ hr}^{-1} - \frac{S}{100 \text{ gal}} \cdot 3 \text{ gal} \text{ hr}^{-1}}{100 \text{ gal}} = 2 - 0.03S \quad S(0) = 0.05 \text{ lb gal}^{-1} 100 \text{ gal} = 5
\]

6. Find the solution of the differential equation \(\frac{dy}{dx} = 2x(1 + y^2) \) satisfying the initial condition \(y(2) = 0 \).

 a. \(y = \tan(x^2) + 2 \)
 b. \(y = \tan^2(x - 2) \)
 c. \(y = \tan(x^2 - 4) \) \(\text{correct choice} \)
 d. \(y = \tan(x^2 + \arctan 2) \)
 e. \(y = \tan^2(x) - \tan^2 2 \)

\[
\int \frac{dy}{1+y^2} = \int 2x \, dx \quad \arctan y = x^2 + C \quad \arctan 0 = 4 + C \quad y = \tan(x^2 - 4)
\]
7. Compute \(\int_{1}^{2} \frac{1}{(x - 2)^{2/3}} \, dx \)

a. \(-\infty\)

b. \(-3\)

c. \(-1\)

d. \(3\) correctchoice

e. \(\infty\)

\(\int_{1}^{2} \frac{1}{(x - 2)^{2/3}} \, dx = \left[\frac{3(x - 2)^{1/3}}{1} \right]_{1}^{2} = 3(2 - 2)^{1/3} - 3(1 - 2)^{1/3} = 3 \)

8. Compute \(\lim_{x \to 0} \frac{\sin(2x) - 2x}{3x^3} \)

a. \(\frac{1}{9}\)

b. \(-4\)

c. \(-\frac{4}{9}\) correctchoice

d. \(-\frac{8}{9}\)

e. \(-\frac{4}{3}\)

\(\lim_{x \to 0} \frac{\sin(2x) - 2x}{3x^3} = \lim_{x \to 0} \left[\frac{2x - \frac{(2x)^3}{3!} + \cdots}{3x^3} \right] - \frac{2x}{\lim_{x \to 0} \left[\frac{2x - \frac{(2x)^3}{3!} + \cdots}{3x^3} \right]} = \frac{2}{6} = -\frac{4}{9} \)

9. Find the radius of convergence of the series \(\sum_{n=1}^{\infty} \frac{2^n}{(n+1)^2} (x - 3)^n \).

a. \(0\)

b. \(\frac{1}{2}\) correctchoice

c. \(2\)

d. \(\frac{1}{3}\)

e. \(3\)

\(L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}(x - 3)^{n+1}}{(n + 2)^2} \frac{(n + 1)^2}{2^n (x - 3)^n} \right| = 2|x - 3| \)

Convergent if \(L = 2|x - 3| < 1 \) or \(|x - 3| < \frac{1}{2}\). So \(R = \frac{1}{2} \).
10. Which term is incorrect in the following partial fraction expansion?

\[
\frac{-10x^2 + 5x^3 - 8x + 1}{(x - 1)(x - 3)^2(x^2 + 2)} = \frac{A}{x - 1} + \frac{B}{x - 3} + \frac{D}{(x - 3)^2} + \frac{Ex + F}{x^2 + 2}
\]

a.

b.

c.

d.

e. They are all correct.

correctchoice

A linear or linear to a power in the denominator gets a constant in the numerator.
A quadratic or quadratic to a power in the denominator gets a linear in the numerator.
So all terms are correct.

11. A vector \(\vec{u} \) has length 3. A vector \(\vec{v} \) has length 4. The angle between them is 60°. Find \(\vec{u} \cdot \vec{v} \).

a. 6
correctchoice

b. \(\frac{1}{24} \)

c. \(\frac{\sqrt{3}}{24} \)

d. 24

e. \(6\sqrt{3} \)

\[
\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos \theta = 3 \cdot 4 \cdot \cos 60° = \frac{12}{2} = 6
\]

12. Find an equation for the plane containing the two lines

\[L_1 : \quad x = 3 + 3t \quad y = 1 + 4t \quad z = 2 + 5t \]
\[L_2 : \quad x = 3 + t \quad y = 1 \quad z = 2 - t \]

a. \(-4x - 8y - 4z = 10 \)

d. \(x + 2y + z = 7 \)

e. \(x + 2y + z = 10 \)

correctchoice

\[\vec{v}_1 = (3, 4, 5) \quad \vec{v}_2 = (1, 0, -1) \quad \vec{N} = \vec{v}_1 \times \vec{v}_2 = (-4, 8, -4) \quad P = (3, 1, 2) \]

\[
\vec{N} \cdot (X - P) = 0 \quad -4(x - 3) + 8(y - 1) - 4(z - 2) = 0
\]
\[
-4x + 8y - 4z = -12 \quad x - 2y + z = 3
\]
Work Out (13 points each)

Show all your work. Partial credit will be given. You may not use a calculator.

13. Compute \[\int \frac{\sqrt{x^2 - 1}}{x} \, dx \]

 \(x = \sec \theta \quad dx = \sec \theta \tan \theta \, d\theta \quad \sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = \tan \theta \)

 \[\int \frac{\sqrt{x^2 - 1}}{x} \, dx = \int \frac{\tan \theta}{\sec \theta} \sec \theta \tan \theta \, d\theta \]

 \[= \int \tan^2 \theta \, d\theta \]

 \[= \int 1 - \sec^2 \theta \, d\theta \]

 \[= \theta - \tan \theta \]

 \[= \arcsin x - \sqrt{x^2 - 1} + C \]

14. The parametric curve given by \(x = t^2, \quad y = \frac{2}{3} t^3, \quad z = \frac{1}{4} t^4 \) for \(0 \leq t \leq 2 \) is rotated about the \(y \)-axis. Find the area of the surface of revolution.

HINT: Factor the quantity in the square root.

\[\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 2t^2, \quad \frac{dz}{dt} = t^3 \]

\[A = \int_0^2 2\pi x \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} \, dt \]

\[= \int_0^2 2\pi t^2 \sqrt{(2t)^2 + (2t^2)^2 + (t^3)^2} \, dt \]

\[= \int_0^2 2\pi t^2 \sqrt{4t^2 + 4t^4 + t^6} \, dt \]

\[= \int_0^2 2\pi t^2 \sqrt{t^2 (2 + t^2)^2} \, dt = \int_0^2 2\pi t^3 \sqrt{(2 + t^2)^2} \, dt = 2\pi \int_0^2 (2t^2 + t^4) \, dt \]

\[= 2\pi \left[\frac{t^4}{2} + \frac{t^6}{6} \right]_0 \]

\[= 2\pi \left[\frac{16}{2} + \frac{64}{6} \right] = 16\pi \left(1 + \frac{4}{3} \right) = \frac{112}{3} \pi \]
15. The region in the first quadrant between the curves \(y = x^2 \) and \(y = 6 - x \) is rotated about the \(y \)-axis. Find the volume of the solid of revolution.

Use an \(x \)-integral with cylinders. \(h = 6 - x - x^2 \) \(r = x \)

To find the right endpoint, we solve \(x^2 = 6 - x \), or \(x^2 + x - 6 = 0 \)
or \((x - 2)(x + 3) = 0 \). In the first quadrant \(x = 2 \).

\[
V = \int_0^2 2\pi rh \, dx = \int_0^2 2\pi x(6 - x - x^2) \, dx = 2\pi \int_0^2 (6x - x^2 - x^3) \, dx \\
= 2\pi \left[3x^2 - \frac{x^3}{3} - \frac{x^4}{4} \right]_0^2 = 2\pi \left[12 - \frac{8}{3} - 4 \right] = \frac{32}{3} \pi
\]

16. A water tank has the shape of a circular cylinder laying on its side. It is 3 ft in radius and 5 ft long. It is half full of water. How much work is needed to pump the water out a spout at the top? (The weight density of water is \(\rho g = 64.5 \text{ lb/ft}^3 \) but you may leave your answer as a multiple of \(\rho g \).)

We put the origin at the center of a circular end with \(y \) measured downward. So the water at height \(y \) must be lifted a distance \(D = y + 3 \).

To know the weight of a slab of water at height \(y \), we must know its volume. Its length is 5. Its width is \(2x \). Its thickness is \(dy \). By the Pythagorean theorem \(x = \sqrt{9 - y^2} \). So the weight is

\[
dF = \rho g \, dV = \rho g 10x \, dy = \rho g 10\sqrt{9 - y^2} \, dy.
\]

So the work is

\[
W = \int D \, dF = \int_0^3 (y + 3) \rho g 10\sqrt{9 - y^2} \, dy \\
= 10\rho g \int_0^3 y\sqrt{9 - y^2} \, dy + 30\rho g \int_0^3 \sqrt{9 - y^2} \, dy
\]

The first integral is a simple substitution. The second integral is the area of a quarter circle of radius 3.

\[
W = 10\rho g \left[-\frac{1}{3} (9 - y^2)^{3/2} \right]_0^3 + 30\rho g \frac{1}{4} \pi (3)^2 \\
= 10\rho g \frac{1}{3} (9)^{3/2} + \frac{135}{2} \rho g \pi = \rho g \left(90 + \frac{135}{2} \pi \right) \\
= 64.5 \left(90 + \frac{135}{2} \pi \right)
\]