Multiple Choice & Work Out: (5 points each)

1. A triangle has vertices \(P = (4,1,2), \ Q = (2,1,4) \) and \(R = (2,1,7) \). Find the angle at vertex \(Q \).
 a. \(\frac{\pi}{4} \)
 b. \(-\frac{\pi}{4} \)
 c. \(\frac{\pi}{2} \)
 d. \(-\frac{\pi}{2} \)
 e. \(\frac{3\pi}{4} \) Correct Choice

\[
\overrightarrow{QP} = P - Q = (2,0,-2) \quad \overrightarrow{QR} = R - Q = (0,0,3) \quad \overrightarrow{QP} \cdot \overrightarrow{QR} = -6
\]

\[
|\overrightarrow{QP}| = \sqrt{4 + 4} = 2\sqrt{2} \quad |\overrightarrow{QR}| = \sqrt{9} = 3
\]

\[
\cos \theta = \frac{\overrightarrow{QP} \cdot \overrightarrow{QR}}{|\overrightarrow{QP}| |\overrightarrow{QR}|} = \frac{-6}{2\sqrt{2} \cdot 3} = -\frac{1}{\sqrt{2}} \Rightarrow \theta = 135^\circ = \frac{3\pi}{4}
\]

2. A triangle has vertices \(P = (4,1,2), \ Q = (2,1,4) \) and \(R = (2,1,7) \). Find the area of the triangle.
 a. 3 Correct Choice
 b. 6
 c. \(6\sqrt{3} \)
 d. 18
 e. 36

\[
\overrightarrow{QP} = P - Q = (2,0,-2) \quad \overrightarrow{QR} = R - Q = (0,0,3)
\]

\[
\overrightarrow{QP} \times \overrightarrow{QR} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 0 & -2 \\
0 & 0 & 3
\end{vmatrix} = \hat{i}(0) - \hat{j}(6) + \hat{k}(0) = (0,-6,0)
\]

\[
\text{Area} = \frac{1}{2} |\overrightarrow{QP} \times \overrightarrow{QR}| = \frac{1}{2} \sqrt{36} = 3
\]
3. If \(\vec{u} \) points NorthWest and \(\vec{v} \) points Down (toward the center of the earth), then \(\vec{u} \times \vec{v} \) points

a. Up

b. SouthEast

c. SouthWest \hspace{1em} \text{Correct Choice}

d. NorthEast

e. NorthWest

Put your fingers NorthWest with the palm facing Down, your thumb points SouthWest.

4. Find the equation of the line which is perpendicular to the plane \(2x - 4y + 3z = 3 \) and passes through the point \((3,2,-1) \). \hspace{1em} \text{HINT: The normal to the plane is the tangent to the line.}

a. \((x,y,z) = (3 + 2t, 2 + 4t, -1 + 3t) \)

b. \((x,y,z) = (3 + 2t, 2 - 4t, -1 + 3t) \) \hspace{1em} \text{Correct Choice}

c. \((x,y,z) = (2 + 3t, 4 + 2t, 3 - t) \)

d. \((x,y,z) = (2 + 3t, -4 + 2t, 3 - t) \)

e. \((x,y,z) = (2 + 3t, 4 - 2t, 3 - t) \)

The normal to the plane is \(\vec{N} = (2, -4, 3) \). So the tangent vector to the line is \(\vec{v} = (2, -4, 3) \).

A point on the line is \(P = (3,2,-1) \). So the line is \(X = P + t\vec{v} = (3 + 2t, 2 - 4t, -1 + 3t) \).

5. Find the point where the line \((x,y,z) = (1 - t, 2 + 2t, -3 + 3t) \) intersects the plane \(3x - 2y + z = 4 \).

Substitute the line into the plane and solve for \(t \):

\[
3(1 - t) - 2(2 + 2t) + (-3 + 3t) = 4 \quad -4 - 4t = 4 \quad -4t = 8 \quad t = (-2)
\]

Substitute back into the line:

\((x,y,z) = (1 - (-2), 2 + 2(-2), -3 + 3(-2)) = (3, -2, -9) \)