1. Find the equation of the plane tangent to the surface \(z e^{x-y^2} = 3 \) at the point \((2, 1, 3)\).
 Its \(z \)-intercept is:

 a. 3
 b. 3
 c. 15
 d. 15
 e. 0

2. Find the equation of the line perpendicular to the surface \(z e^{x-y^2} = 3 \) at the point \((2, 1, 3)\).
 It intersects the \(xy \)-plane at:

 a. \((7, 17, 0)\)
 b. \((-7, -17, 0)\)
 c. \((11, 19, 0)\)
 d. \((-11, -19, 0)\)
 e. \((11, 19, 6)\)
3. If the temperature in a room is given by \(T = 75 + xy^2z \) and a fly is located at \((2, 1, 3)\), in what unit vector direction should the fly fly in order to **decrease** the temperature as fast as possible?

 a. \(\langle 3, 12, 2 \rangle \)
 b. \(\langle 3, -12, 2 \rangle \)
 c. \(\langle -3, -12, -2 \rangle \)
 d. \(\frac{1}{\sqrt{157}} \langle 3, 12, 2 \rangle \)
 e. \(\frac{1}{\sqrt{157}} \langle -3, -12, -2 \rangle \)

4. Which of the following is NOT a critical point of \(f(x, y) = (2x - x^2)(4y - y^2) \)?

 a. \((0, 0)\)
 b. \((0, 4)\)
 c. \((1, 2)\)
 d. \((2, 0)\)
 e. \((-2, 4)\)

5. Find 3 numbers \(a, b \) and \(c \) whose sum is 80 for which \(ab + 2bc + 3ac \) is a maximum.

 Solve on the back of the Scantron.