1. The point \((1,2)\) is a critical point of \(f(x,y) = (2x - x^2)(4y - y^2)\).
 Use the Second Derivative Test to classify \((1,2)\) as one of the following:
 a. Local Maximum
 b. Local Minimum
 c. Inflection Point
 d. Saddle Point
 e. Test Fails

2. Find the volume of the solid below the surface \(z = 2xy\) above the region between the curves \(y = x^2, \ y = 0\) and \(x = 2\).
 a. \(\frac{64}{3}\)
 b. \(\frac{32}{3}\)
 c. \(\frac{16}{3}\)
 d. \(\frac{8}{3}\)
 e. \(\frac{4}{3}\)
3. Reverse the order of integration in the integral \(\int_0^4 \int_0^y e^{x^2+y^2} \, dx \, dy \)

 a. \(\int_0^{16} \int_0^{x^2} e^{x^2+y^2} \, dy \, dx \)

 b. \(\int_0^2 \int_0^{x^4} e^{x^2+y^2} \, dy \, dx \)

 c. \(\int_0^2 \int_0^{x^2} e^{x^2+y^2} \, dy \, dx \)

 d. \(\int_0^2 \int_0^{x^4} e^{x^2+y^2} \, dy \, dx \)

 e. \(\int_0^2 \int_0^{x^2} e^{x^2+y^2} \, dy \, dx \)

4. (10 points) Find the mass and \(x \)-component of the center of mass of the plate in the first quadrant bounded by \(y = 3 - x \), the \(x \)-axis and the \(y \)-axis if the surface density is \(\rho = y \).

 Solve on the back of the Scantron.