1. (5 points) Compute $\int_0^1 \int_{x^2}^1 x^2 y \, dy \, dx$.

 a. $\frac{1}{70}$

 b. $\frac{1}{35}$

 c. $\frac{2}{35}$

 d. $\frac{1}{14}$

 e. $\frac{1}{7}$

2. (5 points) Find the volume below the plane $z = 4x + 10y$ above the region between the parabola $y = x^2$ and the line $y = x$.

 a. 1

 b. 2

 c. 3

 d. 4

 e. 5

3. (5 points) Compute $\int_0^1 \int_0^{x^2} x \, dz \, dy \, dx$.

 a. $\frac{1}{8}$

 b. $\frac{1}{4}$

 c. $\frac{3}{8}$

 d. $\frac{1}{2}$

 e. $\frac{5}{8}$

4. (5 points) Compute $\int_0^{\pi} \int_y^{\pi} \sin(x^2) \, dx \, dy$.

 a. 1

 b. 2

 c. 3

 d. 4

 e. Cannot be computed.
5. (5 points) Reversing the order of integration gives \(\int_0^1 \int_0^1 f(x,y) \, dy \, dx = \)

a. \(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \)
b. \(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \)
c. \(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \)
d. \(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \)
e. \(\int_0^1 \int_0^1 f(x,y) \, dx \, dy \)

6. (5 points) Compute \(\iint_D e^{-x^2-y^2} \, dx \, dy \) over the disk \(D = \{(x,y) \mid x^2 + y^2 \leq 4\} \).

a. \(\frac{\pi}{2} (e^4 - 1) \)
b. \(\frac{\pi}{2} (1 - e^{-4}) \)
c. \(\pi (e^4 - 1) \)
d. \(\pi (1 - e^{-4}) \)
e. Cannot be computed.

7. (5 points) Find the area of one loop of the rose \(r = \sin(3\theta) \).

a. \(\frac{\pi}{12} + \frac{\sqrt{3}}{48} \)
b. \(\frac{\pi}{12} - \frac{\sqrt{3}}{48} \)
c. \(\frac{\pi}{12} + \frac{1}{24} \)
d. \(\frac{\pi}{12} - \frac{1}{24} \)
e. \(\frac{\pi}{12} \)

8. (5 points) Find the mass of the cylinder \(x^2 + y^2 \leq 4 \) for \(0 \leq z \leq 3 \) if the density is \(\rho = x^2 + y^2 + z^2 \).

a. \(24\pi \)
b. \(30\pi \)
c. \(36\pi \)
d. \(52\pi \)
e. \(60\pi \)
9. (20 points) Find the mass M and center of mass (\bar{x}, \bar{y}) of the quarter of the circle $x^2 + y^2 \leq 4$ in the first quadrant if the density is $\rho = 3 + x^2 + y^2$.

HINT: By symmetry, $\bar{x} = \bar{y}$. So you only need to compute \bar{x}.
10. (20 points) Compute $\iint_R x^2 y \, dx \, dy$ over the diamond shaped region R bounded by

$$y = \frac{1}{x}, \quad y = \frac{2}{x}, \quad y = \frac{2}{x^2}, \quad y = \frac{4}{x^2}$$

FULL CREDIT for integrating in the curvilinear coordinates $u = xy$ and $v = x^2 y$. (Solve for x and y.)

HALF CREDIT for integrating in rectangular coordinates.
11. (20 points) Find the volume V and the z-component of the centroid z of the hemisphere $0 \leq z \leq \sqrt{9 - x^2 - y^2}$.