1. Find the volume of the parallelepiped with edges \((3, 2, 0), (-1, 1, 2)\) and \((0, 4, 1)\).

 a. -23
 b. -19
 c. 19
 d. 21
 e. 23

2. Find the unit tangent vector \(\hat{T}\) to the curve \(\vec{r}(t) = (3t, 2t^2, 4t^3)\) at the point \(\vec{r}(1) = (3, 2, 4)\).

 a. \(\left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13} \right)\)
 b. \(\left(\frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}}, \frac{12}{\sqrt{29}} \right)\)
 c. \(\left(\frac{3}{169}, \frac{4}{169}, \frac{12}{169} \right)\)
 d. \(\left(\frac{3}{29}, \frac{4}{29}, \frac{12}{29} \right)\)
 e. \(\left(\frac{3}{169}, -\frac{4}{169}, \frac{12}{169} \right)\)
3. If a jet flies around the world from East to West, directly above the equator, in what direction does the unit binormal \hat{B} point?
 a. North
 b. South
 c. East
 d. West
 e. Down (toward the center of the earth)

4. At the point (x,y,z) where the line $\vec{r}(t) = (2 + t, 3 - t, t)$ intersects the plane $2x - y + z = 5$, we have $x + y + z =$
 a. 2
 b. 3
 c. 4
 d. 5
 e. 6

5. The temperature in an ideal gas is given by $T = \kappa \frac{P}{\rho}$ where κ is a constant, P is the pressure and ρ is the density. At a certain point $Q = (1,2,3)$, we have
 $P(Q) = 4 \quad \vec{\nabla}P(Q) = (-3,2,1)$
 $\rho(Q) = 2 \quad \vec{\nabla}\rho(Q) = (3,-1,2)$
 So at the point Q, the temperature is $T(Q) = 2\kappa$ and its gradient is $\vec{\nabla}T(Q) =$
 a. $\kappa(-4.5,0,2.5)$
 b. $\kappa(1.5,0,2.5)$
 c. $\kappa(1.5,2,-4.5)$
 d. $\kappa(-4.5,2,-1.5)$
 e. $\kappa(-1.5,2,2.5)$
6. The saddle surface \(z = xy \) may be parametrized as \(R(u, v) = (u, v, uv) \). Find the plane tangent to the surface at the point \((1, 2, 2) \).

- a. \(3x + y - z = 3 \)
- b. \(2x + y - z = 2 \)
- c. \(3x + 2y - z = 5 \)
- d. \(2x - y + z = 2 \)
- e. \(3x - y + z = 3 \)

7. Find the minimum value of the function \(f = x^2 + y^2 + z^2 \) on the plane \(x + 2y + 3z = 14 \).

- a. 0
- b. \(\frac{7}{4} \)
- c. \(\frac{7}{2} \)
- d. 14
- e. 28
8. Compute \(\int_0^3 \int_y^9 y \cos(x^2) \, dx \, dy \)

a. \(\frac{1}{4} \sin 81 \)

b. \(\frac{1}{2} \cos 9 - \frac{1}{2} \)

c. \(\frac{9}{2} \sin 81 + \cos 9 - 1 \)

d. \(-\frac{9}{2} \sin 81 + \frac{9}{2} \sin y^4 \)

e. \(\frac{9}{2} \sin 81 - \cos 9 + 1 \)

9. Compute \(\iiint z^2 \, dV \) over the solid sphere \(x^2 + y^2 + z^2 \leq 4 \).

a. \(\frac{64\pi}{5} \)

b. \(\frac{256\pi}{3} \)

c. \(\frac{48\pi}{5} \)

d. \(\frac{64\pi}{15} \)

e. \(\frac{128\pi}{15} \)

10. Compute \(\iint \vec{F} \cdot d\vec{S} \) for \(\vec{F} = (x, y^3, z) \) over the surface of the cube \(0 \leq x \leq 1, \quad 0 \leq y \leq 1, \quad 0 \leq z \leq 1 \) with outward normal.

a. 1

b. 2

c. 3

d. 4

e. 6
11. (15 points) Find the area of the diamond shaped region between the curves
\[y = e^x, \quad y = \frac{1}{4} e^x, \quad y = e^{-x} \quad \text{and} \quad y = 4e^{-x}. \]
You must use the curvilinear coordinates \(u = ye^{-x} \) and \(v = ye^x \).
12. (10 points) Find the mass of a wire in the shape of the curve \(y = \ln(\cos x) \) for \(0 \leq x \leq \frac{\pi}{4} \) if the density is \(\rho = \frac{\sin x}{e^y} \).

Note: The wire may be parametrized as \(\vec{r}(t) = (t, \ln(\cos t)) \).
13. (10 points) Compute \(\int x \, dx + z \, dy - y \, dz \) around the boundary of the triangle with vertices \((0,0,0), (0,1,0), (0,0,1)\), traversed in this order of the vertices. Hint: The \(yz\)-plane may be parametrized as \(\vec{R}(u,v) = (0,u,v) \).
14. (15 points) Compute \[\iiint_{S} \nabla \times \vec{F} \cdot d\vec{S} \]

for \(\vec{F} = (x^2y, y^2z, z^2) \) over the piece of the sphere \(x^2 + y^2 + z^2 = 25 \) for \(0 \leq z \leq 4 \) with normal pointing away from the \(z \)-axis.

Hint: Parametrize the upper and lower edges.