Multiple Choice: (7 points each)

1. Consider the line through the point \(P = (4, 4, 4) \) which is perpendicular to the plane \(x + 2y + 3z = 7 \). Its tangent vector is
 \[\text{a. } (3, 2, 1) \quad \text{b. } (1, 2, 3) \quad \text{c. } (7, 6, 5) \quad \text{d. } (5, 6, 7) \quad \text{e. } (4, 4, 4) \]

If the equation of a plane is \(Ax + By + Cz = D \) then the normal is \(\vec{N} = (A, B, C) \). In this case, \(\vec{N} = (1, 2, 3) \). Since the line is perpendicular to the plane, then its tangent vector is the normal to the plane. So, \(\vec{v} = (1, 2, 3) \).

2. Find the plane tangent to the hyperbolic paraboloid \(x - yz = 0 \) at the point \(P = (6, 3, 2) \). Which of the following points does not lie on this plane?
 \[\text{a. } (-6, 0, 0) \quad \text{b. } (0, 3, 0) \quad \text{c. } (0, 0, 2) \quad \text{d. } (1, -1, -1) \quad \text{e. } (-1, 1, 1) \]

The hyperbolic paraboloid is a level surface of the function \(g = x - yz \). Its gradient is \(\nabla g = (1, -z, -y) \). So the normal to the surface at \(P \) is \(\vec{N} = \nabla g \big|_{(6,3,2)} = (1, -2, -3) \). So the tangent plane is \(\vec{N} \cdot X = \vec{N} \cdot P \), or \(x - 2y - 3z = 6 - 2 \cdot 3 - 3 \cdot 2 = -6 \). Plugging in each point, we find \((1, -1, -1)\) is not a solution.

3. Duke Skywater is flying the Millenium Eagle through a polaron field. His galactic coordinates are \((2300, 4200, 1600) \) measured in lightseconds and his velocity is \(\vec{v} = (.2, .3, .4) \) measured in lightseconds per second. He measures the strength of the polaron field is \(p = 274 \) milliwookies and its gradient is \(\nabla p = (3, 2, 2) \) milliwookies per lightsecond. Assuming a linear approximation for the polaron field and that his velocity is constant, how many seconds will Duke need to wait until the polaron field has grown to \(286 \) milliwookies?
 \[\text{a. } 2 \quad \text{b. } 3 \quad \text{c. } 4 \quad \text{d. } 6 \quad \text{e. } 12 \]
The derivative along Duke’s path is

\[
\frac{dp}{dt} = \mathbf{v} \cdot \nabla p = (0.2, 0.3, 0.4, 0.6 \text{ lightseconds}) \cdot (3.2, 2.2, 0.8 \text{ milliwookies per lightsecond})
\]

\[
= 0.6 + 0.6 + 0.8 = 2 \text{ milliwookies per second}
\]

So the polaron field increases 2 milliwookies each second. To increase 12 milliwookies, it will take 6 seconds.

4. Consider the surface \(S \) parametrized by \(\mathbf{r}(u, v) = (u + v, u - v, uv) \) for \(0 \leq u \leq 2 \) and \(0 \leq v \leq 4 \). Compute \(\iint_S \mathbf{F} \cdot d\mathbf{S} \) where \(\mathbf{F} = (y, x, y) \).

a. -32
b. -16
c. 16 correct choice
d. 32
e. 64

\[
\mathbf{r}_u = (1, 1, v) \quad \mathbf{r}_v = (1, -1, u) \quad \mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (u + v, v - u, -2)
\]

\[
\mathbf{F} = (y, x, y) = (u - v, u + v, u - v)
\]

\[
\mathbf{F} \cdot \mathbf{N} = (u - v)(u + v) + (u + v)(v - u) - 2(u - v) = -2u + 2v
\]

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_S \mathbf{F} \cdot \mathbf{N} du dv = \int_0^4 \int_0^4 (-2u + 2v) du dv = \int_0^4 \left[-u^2 + 2uv \right]_{u=0}^{u=2} dv
\]

\[
= \int_0^4 \left[-4 + 4v \right] dv = \left[-4v + 2v^2 \right]_0^4 = -16 + 32 = 16
\]

5. Consider the surface \(S \) parametrized by \(\mathbf{r}(u, v) = (u + v, u - v, uv) \). Find the plane tangent to this surface at the point \(P = \mathbf{r}(1, 2) = (3, -1, 2) \). Which of the following points does not lie on this plane?

a. (3, 0, 0) correct choice
b. (0, 4, 0)
c. (0, 0, -2)
d. (1, 1, 0)
e. (0, 6, 1)

\[
\mathbf{r}_u = (1, 1, v) \quad \mathbf{r}_v = (1, -1, u) \quad \mathbf{N} = \mathbf{r}_u \times \mathbf{r}_v = (u + v, v - u, -2)
\]

The normal at \(P \) is \(\mathbf{N}_P = \mathbf{N}_{(1,2)} = (3, 1, -2) \) and the tangent plane is \(\mathbf{N} \cdot \mathbf{X} = \mathbf{N} \cdot \mathbf{P} \), or

\[
3x + y - 2z = 3(3) + (-1) - 2(2) = 4.
\]

Plugging in each point, we find (3, 0, 0) is not a solution.
6. Compute \(\iint (-x^2y^2 \, dx + 2xy^3 \, dy) \) over the complete boundary of the semicircular area \(0 \leq y \leq \sqrt{4-x^2} \) traversed counterclockwise.

a. 0
b. 16
c. \(\frac{4}{5} \)
d. \(\frac{80}{5} \)
e. \(\frac{128}{5} \) correct choice

By Green’s Theorem:
\[
\iint (-x^2y^2 \, dx + 2xy^3 \, dy) = \iint \left(\frac{\partial}{\partial x} (2xy^3) - \frac{\partial}{\partial y} (-x^2y^2) \right) \, dx \, dy = \iint (2y^3 + 2x^2y) \, dx \, dy
\]
\[
= \left[\int_0^\pi \int_0^2 2r^2 \sin \theta \, r \, dr \, d\theta \right] = 2 \left[-\cos \theta \right]_0^\pi \left[\frac{r^5}{5} \right]_0^2 = \frac{128}{5}
\]

7. Compute \(\iiint s \frac{x^2z^2}{3} \, dy \, dz + \frac{y^2z^2}{3} \, dz \, dx + \frac{z^5}{5} \, dx \, dy \) over the complete surface of the sphere \(x^2 + y^2 + z^2 = 4 \) with outward normal.

a. \(\frac{512\pi}{21} \) correct choice
b. \(\frac{32\pi^2}{4} \)
c. \(\frac{128\pi}{5} \)
d. \(\frac{16\pi}{3} \)
e. \(\frac{256\pi}{15} \)

Apply Gauss’ Theorem in spherical coordinates:
\[
\vec{F} = \left(\frac{x^2z^2}{3}, \frac{y^2z^2}{3}, \frac{z^5}{5} \right) \quad \vec{\nabla} \cdot \vec{F} = x^2z^2 + y^2z^2 + z^4 = (x^2 + y^2 + z^2)z^2 = \rho^2 \cdot \rho^2 \cos^2 \theta
\]
\[
I = \iiint \vec{\nabla} \cdot \vec{F} \, dV = \int_0^{2\pi} \int_0^\pi \int_0^2 \rho^4 \cos^2 \theta \cdot \rho^2 \sin \theta \, d\rho \, d\phi \, d\theta = 2\pi \left[-\frac{\cos^3 \theta}{3} \right]_0^\pi \left[\frac{\rho^7}{7} \right]_0^2 = \frac{512\pi}{21}
\]

8. (15 points) Find the point in the first octant on the surface \(z = \frac{32}{x^4y^2} \) which is closest to the origin.

Minimize \(f = x^2 + y^2 + z^2 \) on the surface \(g = zx^4y^2 = 32 \).
\[
\vec{\nabla} f = (2x, 2y, 2z) \quad \vec{\nabla} g = (4xz^3y^2, 2zx^4y, x^4y^2) \quad \vec{\nabla} f = \lambda \vec{\nabla} g
\]
\[
2x = \lambda 4xz^3y^2 \quad 2y = \lambda 2zx^4 \quad 2z = \lambda x^4y^2 \quad \lambda = \frac{1}{2zx^2y^2} = \frac{1}{zx^4} = \frac{2z}{x^4y^2}
\]
\[
x^2 = 2y^2 \quad y^2 = 2z^2 \quad x = \sqrt{2}y \quad z = \frac{1}{\sqrt{2}}y
\]
\[
g = zx^4y^2 = \left(\frac{1}{\sqrt{2}}y \right) \left(\sqrt{2}y \right)^4 y^2 = 2^{32}y^7 = 32 = 2^5 \quad y^7 = 2^{7/2}
\]
\[
y = \sqrt{2} \quad x = 2 \quad z = 1 \quad (x, y, z) = (2, \sqrt{2}, 1)
9. (10 points) Compute \(\iint_R x \, dA \) over the region \(R \) in the first quadrant bounded by the curves
\[y = x^2, \quad y = x^4 \quad \text{and} \quad y = 16. \]

The left edge is \(y = x^4 \) or \(x = y^{1/4} \). The right edge is \(y = x^2 \) or \(x = y^{1/2} \).

\[
\iint_R x \, dA = \int_1^{16} \int_{x^{1/4}}^{x^{1/2}} x \, dy \, dx = \int_1^{16} \left[\frac{x^2}{2} \right]_{x^{1/4}}^{x^{1/2}} \, dy = \int_1^{16} \left[\frac{y}{2} - \frac{y^{1/2}}{2} \right] \, dy \\
= \left[\frac{x^2}{4} - \frac{y^{3/2}}{3} \right]_1^{16} = \left[\frac{256}{4} - \frac{64}{3} \right] - \left[\frac{1}{4} - \frac{1}{3} \right] = \frac{255}{4} - 21 = \frac{171}{4}
\]

10. (15 points) Find the mass and center of mass of the solid below the paraboloid
\(z = 4 - x^2 - y^2 \) above the \(xy \)-plane, if the density is \(\delta = x^2 + y^2 \). (11 points for setting up the integrals and the final formula.)

In cylindrical coordinates, the paraboloid is \(z = 4 - r^2 \), the density is \(\delta = r^2 \) and the Jacobian is \(r \).

\[
M = \iiint \delta \, dV = \int_0^{2\pi} \int_0^2 \int_0^{4-r^2} r^2 \, dz \, dr \, d\theta \\
= 2\pi \int_0^2 \int_0^{4-r^2} r^2 \, dz \, dr = 2\pi \int_0^2 r^3 (4 - r^2) \, dr \\
= 2\pi \left[r^4 - \frac{r^6}{6} \right]_0^2 = 2\pi \left(16 - \frac{32}{3} \right) = \frac{32\pi}{3}
\]

\(z \)-mom = \(\iiint z \delta \, dV = \int_0^{2\pi} \int_0^2 \int_0^{4-r^2} rz^3 \, dz \, dr \, d\theta \\
= 2\pi \int_0^2 r^3 \frac{z^2}{2} \left|_0^{4-r^2} \right. \, dr = \pi \int_0^2 r^3 (4 - r^2)^2 \, dr \\
\text{Let } u = r^2. \text{ Then } du = 2r \, dr \text{ and } r \, dr = \frac{1}{2} \, du. \text{ So} \\
z \text{-mom } = \frac{\pi}{2} \int_0^4 u(4-u)^2 \, du = \frac{\pi}{2} \int_0^4 u(16 - 8u + u^2) \, du = \frac{\pi}{2} \left[8u^2 - 8\frac{u^3}{3} + \frac{u^4}{4} \right]_0^4 \\
= \frac{\pi}{2} \left(128 - \frac{512}{3} + 64 \right) = \frac{32\pi}{3}
\]

\[
\bar{z} = \frac{z \text{-mom}}{M} = \frac{32\pi}{3} \cdot \frac{3}{32\pi} = 1
\]

\[
\bar{x} = \bar{y} = 0 \quad \text{by symmetry.}
\]
11. (15 points) Find the area and centroid of the right leaf of the rose

\[r = 2 \cos^2 \theta. \]

(12 points for setting up the integrals and the final formula.)

\[
A = \int_{-\pi/2}^{\pi/2} \int_{0}^{2 \cos^2 \theta} r \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^2}{2} \right]_{0}^{2 \cos^2 \theta} d\theta = \int_{-\pi/2}^{\pi/2} 2 \cos^4 \theta d\theta = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \left(1 + 2 \cos 2\theta + \frac{1}{2} \cos 4\theta \right) d\theta
\]

\[
= \frac{3}{4} \left(\frac{\pi}{2} - \frac{-\pi}{2} \right) = \frac{3\pi}{4}
\]

\[
x\text{-mom} = \int_{-\pi/2}^{\pi/2} \int_{0}^{2 \cos^2 \theta} r^2 \cos \theta \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \left[\frac{r^3}{3} \right]_{0}^{2 \cos^2 \theta} \cos \theta d\theta = \frac{8}{3} \int_{-\pi/2}^{\pi/2} \cos^6 \theta \cos \theta d\theta
\]

\[
= \frac{8}{3} \int_{-\pi/2}^{\pi/2} (1 - \sin^2 \theta)^3 \cos \theta d\theta
\]

\[
= \frac{8}{3} \int_{-\pi/2}^{\pi/2} (1 - \frac{1}{2} u^2)^3 \, du = \frac{8}{3} \int_{-1}^{1} (1 - \frac{3}{2} u^2 + 3u^4 - u^6) \, du
\]

\[
= \frac{8}{3} \left[u - \frac{3}{5} u^5 - \frac{u^7}{7} \right]_{-1}^{1} = \frac{16}{3} \left[1 - \frac{3}{5} - \frac{1}{7} \right] = \frac{16}{3} \frac{16}{35} = \frac{256}{105}
\]

\[
\bar{x} = \frac{x\text{-mom}}{A} = \frac{256}{105} \cdot \frac{4}{3\pi} = \frac{1024}{315\pi}
\]

\[
\bar{y} = 0 \quad \text{by symmetry.}
\]