M412 Practice Problems for Final Exam

1. Solve the PDE

\[u_t + t^3 u_x = u \]
\[u(t, 0) = t, \quad t > 0 \]
\[u(0, x) = 1 - e^{-x}, \quad x > 0. \]

2. Solve the PDE

\[u_{tt} = e^2 u_{xx}; \quad x > 0, t > 0 \]
\[u(0, x) = f(x); \quad x > 0 \]
\[u_t(0, x) = g(x); \quad x > 0 \]
\[u_x(t, 0) = t; \quad t > 0. \]

3. Solve the PDE

\[u_{xx} + u_{yy} = 0 \]
\[u(x, 0) = 0, \quad u(x, 2) = 0 \]
\[u(0, y) = 0, \quad u(1, y) = 2. \]

4. Solve the PDE

\[u_t = u_{xx} + e^{-t} \sin 3\pi x \]
\[u(t, 0) = 0, \quad u(t, 1) = 0 \]
\[u(0, x) = \sin \pi x. \]

5. For the PDE in Problem 4, find an equilibrium solution and show that it matches the limit as \(t \to \infty \) of your solution to Problem 4.

6. For the PDE

\[u_t = u_{xx} + t \sin x \]
\[u_x(t, 0) = -1 \]
\[u_x(t, \pi) = 0 \]
\[u(0, x) = \cos x, \]

find the total energy

\[\int_0^\pi u(t, x) dx. \]

7. Use separation of variables to show that solutions to the quarter-plane problem

\[u_t = u_{xx}; \quad t > 0, x > 0 \]
\[u_x(t, 0) = 0 \]
\[|u(t, +\infty)| \text{ bounded} \]
\[u(0, x) = f(x) \]
can be written in the form
\[u(t, x) = \int_0^\infty C(\omega) e^{-\omega^2 t} \cos \omega x d\omega, \]
for some appropriate constant \(C(\omega) \).

8. Use the method of Fourier transforms to solve the first order equation
\[u_t = u_x \]
\[u(0, x) = f(x). \]

9. [This question appeared on Exam 3.] Use Fourier’s Theorem to prove that if a function \(f(x) \) is piecewise smooth on an interval \([0, L]\), then the Fourier cosine series for \(f(x) \) converges for all \(x \in (0, L) \) to
(i) \(f(x) \) if \(f \) is continuous at the point \(x \)
(ii) \(\frac{1}{2} (f(x^-) + f(x^+)) \) if \(f \) has a jump discontinuity at the point \(x \)

What does the Fourier cosine series converge to at the endpoints \(x = 0 \) and \(x = L \)?

10. We have seen in the homework that if a function \(f(x) \) is piecewise smooth on an interval \([0, L]\), then the Fourier sine series for \(f(x) \) converges for all \(x \in (0, L) \) to
(i) \(f(x) \) if \(f \) is continuous at the point \(x \)
(ii) \(\frac{1}{2} (f(x^-) + f(x^+)) \) if \(f \) has a jump discontinuity at the point \(x \).

Use this and Problem 9 to prove that if \(f(x) \) is continuous on \([0, L]\) and \(f'(x) \) is piecewise smooth on the same interval, then the Fourier cosine series for \(f(x) \) can be differentiated term by term.

Solutions

1. For \(x \geq \frac{t^4}{4} \), we have
\[
\frac{dx}{dt} = t^3; \quad x(0) = x_0 \Rightarrow x(t) = \frac{t^4}{4} + x_0
\]
\[
\frac{du}{dt} = u; \quad u(0) = 1 - e^{-x_0} \Rightarrow u(t) = (1 - e^{-x_0})e^t,
\]
from which we conclude
\[u(t, x) = (1 - e^{-(x - \frac{t^4}{4})})e^t. \]

For \(x \leq \frac{t^4}{4} \), we have
\[
\frac{dx}{dt} = t^3; \quad x(t_0) = 0 \Rightarrow x(t) = \frac{t^4}{4} - \frac{t^4}{4} t_0
\]
\[
\frac{du}{dt} = u; \quad u(t_0) = t_0 \Rightarrow u(t) = t_0 e^{t-t_0},
\]
from which we conclude
\[u(t, x) = (t^4 - 4x)^{1/4} e^{-(t^4 - 4x)^{1/4}}. \]
Combining these,
\[
 u(t, x) = \begin{cases}
 (t^4 - 4x)^{1/4}e^{-(t^4 - 4x)^{1/4}}, & x \leq \frac{t^4}{4} \\
 (1 - e^{-(x - \frac{t^4}{4})})e^{t}, & x \geq \frac{t^4}{4}.
 \end{cases}
\]

2. We write solutions in the form
\[
 u(t, x) = F(x - ct) + G(x + ct),
\]
where for \(x > 0 \), we have
\[
 F(x) = \frac{1}{2}f(x) - \frac{1}{2c} \int_0^x g(y)dy \\
 G(x) = \frac{1}{2}f(x) + \frac{1}{2c} \int_0^x g(y)dy.
\]
This entirely determines the solution for \(x - ct > 0 \). For \(x - ct < 0 \), we need to evaluate \(F \) at negative numbers. In order to do this, we notice that our final condition gives
\[
 t = F'(-ct) + G'(ct).
\]
Setting \(x = -ct \), we find
\[
 F'(x) = -\frac{x}{c} - G'(-x).
\]
We compute, now,
\[
 \int_0^x F'(y)dy = \int_0^x -\frac{y}{c} - G'(-y)dy \Rightarrow F(x) - F(0) = -\frac{x^2}{2c} + G(-x) - G(0).
\]
It’s clear from our expressions for \(F \) and \(G \) that (assuming our solution is continuous) \(F(0) = G(0) \), from which we conclude
\[
 F(x) = -\frac{x^2}{2c} + G(-x).
\]
In this way, for \(x - ct < 0 \),
\[
 F(x - ct) = -\frac{(x - ct)^2}{2c} + G(ct - x).
\]
We have, then
\[
 u(t, x) = \begin{cases}
 \frac{1}{2}[f(x - ct) + f(x + ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} g(y)dy, & x - ct > 0 \\
 -\frac{(x - ct)^2}{2c} + \frac{1}{2}[f(ct - x) + f(x + ct)] + \frac{1}{2c} \int_0^{x+ct} g(y)dy + \frac{1}{2c} \int_0^{ct-x} g(y)dy, & x - ct < 0.
 \end{cases}
\]

3. Since we have a bounded domain, we proceed by separation of variables, letting \(u(x, y) = X(x)Y(y) \), for which we find
\[
 u_{xx} + u_{yy} = 0 \Rightarrow X''(x)Y(y) + X(x)Y''(y) = 0 \Rightarrow \frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \lambda.
\]
Observe here in particular that we have chosen the sign in front of \(\lambda \) so that the variable with both boundary conditions 0 (\(Y \) in this case) will have the standard eigenvalue equation, \(Y'' + \lambda Y = 0 \). We have, \(u(x, 0) = 0 \Rightarrow Y(0) = 0, u(x, 2) = 0 \Rightarrow Y(2) = 0, \) and \(u(0, y) = 0 \Rightarrow X(0) = 0 \). We have, then, the two ODE
\[
 \begin{align*}
 Y'' + \lambda Y &= 0; & Y(0) = 0, Y(2) = 0 \\
 X'' - \lambda X &= 0; & X(0) = 0.
 \end{align*}
\]
For the $Y(y)$ equation, we take $Y(y) = C_1 \cos \sqrt{\lambda} y + C_2 \sin \sqrt{\lambda} y$, and use the boundary conditions to conclude

$$Y_n(y) = \sin \frac{n\pi}{2} y, \quad n = 1, 2, 3, \ldots$$

For $X(x)$, we have

$$X(x) = C_3 \cosh \frac{n\pi}{2} x + C_4 \sinh \frac{n\pi}{2} x,$$

for which our boundary condition $X(0) = 0$ determines $C_3 = 0$, eliminating one constant of integration. We finally have our general expansion for $u(x, y)$,

$$u(x, y) = \sum_{n=1}^{\infty} A_n \sinh \frac{n\pi}{2} x \sin \frac{n\pi}{2} y.$$

Finally, we employ our last boundary condition, $u(1, y) = 2$ to obtain the Fourier sine series

$$2 = \sum_{n=1}^{\infty} A_n \sinh \frac{n\pi}{2} \sin \frac{n\pi}{2} y.$$

We have, then

$$A_n \sinh \frac{n\pi}{2} = \frac{2}{2} \int_0^{2} 2 \sin \frac{n\pi}{2} y \, dy = -4 \left(\frac{n\pi}{2} \right)^2 y \bigg|_0^2 = -4 \frac{n\pi}{2} \left[(-1)^n - 1 \right],$$

where I have explicitly written the fraction $\frac{1}{2}$ as a reminder that it comes from $\frac{1}{2}$. Our solution is

$$u(x, y) = \sum_{n=1}^{\infty} \frac{1}{n\pi} \left[(-1)^n - 1 \right] \sinh \frac{n\pi}{2} x \sin \frac{n\pi}{2} y.$$

4. Due to the non-homogeneous term, we must proceed here by eigenfunction expansion. First, we construct eigenfunctions, $X_n(x)$, for the homogeneous problem. Substituting $u(t, x) = T(t)X(x)$ into $u_t = u_{xx}$, and considering our boundary conditions, we determine

$$X'' + \lambda X = 0; \quad X(0) = 0, X(1) = 0,$$

for which we have $X_n(x) = \sin n\pi x$. We now look for a solution as an expansion of these eigenfunctions

$$u(t, x) = \sum_{n=1}^{\infty} c_n(t) \sin n\pi x.$$

Substituting this expansion back into the full non-homogeneous equation, we find

$$\sum_{n=1}^{\infty} \left(c_n'(t) + n^2 \pi^2 c_n(t) \right) \sin n\pi x = e^{-t} \sin 3\pi x.$$

The key observation we make here is that this is simply a Fourier sine series with fancy constants, $B_n = c_n'(t) - n^2 \pi^2 c_n(t)$. Consequently, we have

$$c_n'(t) + n^2 \pi^2 c_n(t) = 2 \int_0^1 e^{-t} \sin(3\pi x) \sin(n\pi x) \, dx = \begin{cases} e^{-t}, & n = 3 \\ 0, & n \neq 3. \end{cases}$$
For initial conditions, we take our initial data

\[u(0, x) = \sin \pi x \Rightarrow \sin \pi x = \sum_{n=1}^{\infty} c_n(0) \sin n\pi x, \]

for which

\[c_n(0) = 2 \int_{0}^{1} \sin(\pi x) \sin(n\pi x) dx = \begin{cases} 1, & n = 1 \\ 0, & n \neq 1. \end{cases} \]

We have now an ODE to solve for each \(n = 1, 2, 3, \ldots \), but we observe that if both \(c_0' + n^2c_0(t) \) and \(c_n(0) \) are \(0 \), then \(c_n(t) \equiv 0 \). In this case, the only two expansion coefficients that are not identically \(0 \) are \(c_1(t) \) and \(c_3(t) \). For \(c_1(t) \), we have

\[c_1' + \pi^2 c_1 = 0; \quad c_1(0) = 1 \Rightarrow c_1(t) = e^{-\pi^2 t}. \]

For \(c_3(t) \), we have

\[c_3' + 9\pi^2 c_3 = e^{-t}; \quad c_3(0) = 0, \]

which we solve by the integrating factor method. (Recall that for a general linear first order equation \(y'(t) + p(t)y(t) = g(t) \), the integrating factor is \(e^{\int p(t)dt} \), where the constant of integration can be dropped.) In this case, the integrating factor is simply \(e^{9\pi^2 t} \), and we have

\[
(e^{9\pi^2 t} c_3)' = e^{9\pi^2 t} e^{-t} \Rightarrow e^{9\pi^2 t} c_3(t) = \frac{1}{9\pi^2} (e^{-t} - e^{-9\pi^2 t}) + C.
\]

According to our initial condition \(c_3(0) = 0 \), we have

\[C = \frac{1}{1 - 9\pi^2}. \]

We conclude that

\[c_3(t) = \frac{1}{1 - 9\pi^2} (e^{-9\pi^2 t} - e^{-t}), \]

with then

\[u(t, x) = e^{-\pi^2 t} \sin(\pi x) + \frac{1}{1 - 9\pi^2} (e^{-9\pi^2 t} - e^{-t}) \sin(3\pi x). \]

5. Our equilibrium equation for \(\tilde{u}(x) \) is

\[\tilde{u}_{xx} = 0 \]

\[\tilde{u}(0) = 0 \]

\[\tilde{u}(1) = 0, \]

which is solved by

\[\tilde{u}(x) \equiv 0. \]

Taking a limit as \(t \to \infty \) of our solution to Problem 4, we see that they agree.

6. Integrating the full equation, we have

\[\int_{0}^{\pi} u_t dx = \int_{0}^{\pi} u_{xx} dx + \int_{0}^{\pi} t \sin x dx \Rightarrow \frac{d}{dt} \int_{0}^{\pi} u(t, x) dx = u_x(t, \pi) - u_x(t, 0) - t \cos x \bigg|_{0}. \]

It follows that

\[\frac{d}{dt} \int_{0}^{\pi} u(t, x) dx = 1 + 2t. \]

5
Integrating,
\[\int_0^\pi u(t, x)dx = t + t^2 + C. \]
In order to find \(C \), we use \(u(0, x) = \cos x \) to compute
\[\int_0^\pi \cos x dx = C \Rightarrow C = 0. \]
We conclude
\[\int_0^\pi u(t, x)dx = t + t^2. \]

7. Separate variables with \(u(t, x) = T(t)X(x) \), and set
\[\frac{T'}{T} = \frac{X''}{X} = -\lambda, \]
from which we have the eigenvalue problem
\[\begin{align*}
X'' + \lambda X &= 0 \\
X'(0) &= 0 \\
X(+\infty) &\text{ bounded}.
\end{align*} \]
In this case, all \(\lambda \geq 0 \) are eigenvalues, with associated eigenfunctions
\[X_\lambda(x) = \cos \sqrt{\lambda}x. \]
Since the eigenvalues are continuous, we integrate rather than summing, obtaining a general solution of the form
\[u(t, x) = \int_0^\infty A(\lambda)e^{-\lambda t} \cos \sqrt{\lambda}x d\lambda. \]
Finally, set \(\omega = \sqrt{\lambda} \) to get
\[u(t, x) = \int_0^\infty A(\omega^2)e^{-\omega^2 t} \cos \omega x 2\omega d\omega. \]
The stated result follows from the choice
\[C(\omega) = 2\omega A(\omega^2). \]

8. Taking the Fourier transform of this equation, we have
\[\begin{align*}
\hat{u}_t &= -i\omega \hat{u} \\
\hat{u}(t, \omega) &= \hat{f}(\omega) e^{-i\omega t}.
\end{align*} \]
Inverting, we compute
\[u(t, x) = \int_{-\infty}^{+\infty} e^{-i\omega x} \hat{f}(\omega) e^{-i\omega t} d\omega = \int_{-\infty}^{+\infty} e^{-i\omega(x+t)} \hat{f}(\omega) d\omega, \]
where this last expression is the inverse transform of \(\hat{f} \), evaluated at \(x + t \). That is,
\[u(t, x) = f(x + t). \]
9. Since \(f(x) \) is only defined on the interval \([0, L]\), we are free to extend it in any way we like to the full interval \([-L, L]\), where Fourier’s theorem is valid. We extend it as an even function, so that the extension \(f_E(x) \) is defined by

\[
f_E(x) = \begin{cases}
 f(x), & 0 \leq x \leq L \\
 f(-x), & -L \leq x \leq 0.
\end{cases}
\]

If \(f(x) \) is piecewise smooth on \([0, L]\), then \(f_E(x) \) is piecewise smooth on \([-L, L]\), and Fourier’s Theorem states that \(f_E \) definitely has a convergent Fourier series,

\[
f_E(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} + B_n \sin \frac{n\pi x}{L}.
\]

We now compute \(A_0, A_n, \) and \(B_n \), keeping in mind that \(f_E(x) \) is an even function. We have

\[
A_0 = \frac{1}{2L} \int_{-L}^{L} f_E(x) \, dx = \frac{1}{L} \int_{0}^{L} f_E(x) \, dx
\]

\[
A_n = \frac{1}{L} \int_{-L}^{L} f_E(x) \cos \frac{n\pi x}{L} \, dx = \frac{2}{L} \int_{0}^{L} f_E(x) \cos \frac{n\pi x}{L} \, dx
\]

\[
B_n = \frac{1}{L} \int_{-L}^{L} f_E(x) \sin \frac{n\pi x}{L} \, dx = 0.
\]

In this way, we see that the series for \(f_E(x) \) is a Fourier cosine series that converges on \([-L, L]\). If it converges on \([-L, L]\), it must converge on \([0, L]\), and since \(f(x) \) and \(f_E(x) \) agree there, it converges to \(f(x) \).

Last, since \(f_E(x) \) is an even extension, we have

\[
\lim_{x \to 0^-} f_E(x) = \lim_{x \to 0^+} f_E(x)
\]

\[
\lim_{x \to L^-} f_E(x) = \lim_{x \to L^+} f_E(x),
\]

so that the Fourier cosine series of \(f(x) \) converges at \(x = 0 \) to

\[
\lim_{x \to 0^+} f(x),
\]

and at \(x = L \) to

\[
\lim_{x \to L^-} f(x).
\]

10. First, under these assumptions, \(f(x) \) has a convergent Fourier cosine series (by Problem 9),

\[
f(x) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L}.
\]

Moreover, \(f'(x) \) has a convergent sine series

\[
f'(x) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L}.
\]

with

\[
B_n = \frac{2}{L} \int_{0}^{L} f'(x) \sin \frac{n\pi x}{L} \, dx = \frac{2}{L} \left[f(x) \sin \frac{n\pi x}{L} \right]_0^L - \frac{n\pi}{L} \int_{0}^{L} f(x) \cos \frac{n\pi x}{L} \, dx
\]

\[
= -\frac{n\pi}{L} A_n,
\]

which gives precisely the series that arises by differentiating the Fourier cosine series of \(f(x) \) term by term.