Problem 1. Let X be a paracompact space that contains a dense Lindelöf subspace D. Prove that X is also Lindelöf.

Problem 2. Define a relation on \mathbb{R}^2 by $(x_1, y_1) \sim (x_2, y_2)$ provided $x_1 + y_1^2 = x_2 + y_2^2$. Show that \sim is an equivalence relation on \mathbb{R}^2 and describe the resulting identification space.

Problem 3. Show that the subset of S^n defined by the inequality $x_2^1 + \cdots x_k^2 \leq x_{k+1}^2 + \cdots x_{n+1}^2$ is homeomorphic to $D^k \times S^{n-k}$. (Here, D^k is the closed unit ball in \mathbb{R}^k.)

Problem 4. Define functions from \mathbb{R} to \mathbb{R}^2 as follows: $f(t) = (t, t^3)$, $g(t) = (t^2, t^3)$, $h(t) = (t^3, t^5)$, $k(t) = (\cos t, \sin t)$.

a: Show that f is a smooth embedding of \mathbb{R} into \mathbb{R}^2.

b: Show that h is a topological embedding of \mathbb{R} into \mathbb{R}^2 but it is not an immersion.

c: Is g an immersion? An embedding?

d: Is k an immersion? An embedding?

Problem 5. Let $i : M \hookrightarrow \mathbb{R}^n$ be a smooth embedding of an m-manifold M as a closed submanifold of \mathbb{R}^n, and let $f : M \to \mathbb{R}$ be a smooth function.

a: Show that for each point $p \in M$ one can find an open neighborhood U of $i(p)$ in \mathbb{R}^n and a smooth function $F_U : U \to \mathbb{R}$ whose restriction to $U \cap M$ coincides with the restriction of f to $U \cap M$.

b: Use the previous item to prove that one can find a smooth function $F : \mathbb{R}^n \to \mathbb{R}$ such that $f = F \circ i$, i.e., the restriction of F to M is f.

Problem 6. a: Given $p \in M$, explain why $T_p M$ can be identified to a linear subspace of $T_p \mathbb{R}^n \equiv \mathbb{R}^n$ under i_*.

b: Let $f : U \to \mathbb{R}$ be a smooth real valued function defined on an open neighborhood $U \subset \mathbb{R}^n$ of $p \in M$, which is constant on M. Show that the gradient ∇f is perpendicular to $T_p M$.

(REMARK: In the last statement we are identifying M with its image $i(M) \subset \mathbb{R}^r$ under i. Recall that the gradient of f at $x \in \mathbb{R}^n$ is the vector $\nabla f(x) = (\frac{\partial f}{\partial x_1} |_x, \ldots, \frac{\partial f}{\partial x_n} |_x)$.)
Problem 7.

a: Let \(p, q \in B \) be distinct points in an open ball \(B \subset \mathbb{R}^n \). Given vectors \(u, v \in \mathbb{R}^n \), show that one can find a smooth curve \(\gamma : (-\epsilon, 1+\epsilon) \to B \) such that \(\gamma(0) = p, \gamma(1) = q \) and \(\gamma'(0) = u, \gamma'(1) = v \).

b: Let \(M^m \) be a smooth manifold of dimension \(m \). Explain why the connected components of \(M \) are the same as the path-components.

c: Explain why \(M \) has at most countably many connected components.

d: Suppose that \(M \) is connected, and let \(p, q \) be points in \(M \). Show that there is a smooth curve \(\gamma : [0,1] \to M \) with \(\gamma(0) = p \) and \(\gamma(1) = q \).

Problem 8. Let \(f : M \to N \) be a continuous map from a space \(M \) into a connected smooth \(n \)-dimensional manifold \(N \). Suppose that every point \(y \in N \) has a neighborhood \(V \) such that \(f^{-1}(V) \) is a disjoint union \(U_1 \ldots \cup U_k \) of open subsets of \(M \) with the property that the restriction \(f|_{U_i} : U_i \to V \) is a homeomorphism.

a: Show that \(f \) is both an open map and an identification map.

b: Show that the number \(k \) in the disjoint union above is the same for every point \(y \in N \).

c: Show that \(f \) induces a structure of smooth manifold of dimension \(n \) on \(M \) so that \(f \) is a smooth map and a local diffeomorphism. (In particular, \(f \) is a submersion and an immersion, but \(f \) is not necessarily an embedding.)

Problem 9. Let \(F_{k,n} \subset \mathbb{R}^n \times \cdots \times \mathbb{R}^n \) denote the subset consisting of \(k \)-tuples \((v_1, \ldots, v_k) \) of orthonormal vectors (i.e. \(|v_i| = 1 \) for all \(i \) and \(v_i \cdot v_j = 0 \) if \(i \neq j \)).

a: Show that \(F_{k,n} \) is a compact smooth submanifold of \(\mathbb{R}^n \times \cdots \times \mathbb{R}^n \), and determine its dimension.

b: Exhibit a surjective smooth map \(O(n) \to F_{k,n} \), where \(O(n) \) is the orthogonal group, and explain why this is an identification map (a quotient map).

Problem 10. Let \(SL_n(\mathbb{R}) \) denote the set of \(n \times n \) real matrices with determinant 1.

a: Show that \(SL_n(\mathbb{R}) \) is a smooth manifold and compute its dimension. Explain why \(SL_n(\mathbb{R}) \) is a Lie Group.

b: Since \(SL_n(\mathbb{R}) \) is a submanifold of \(M_{n \times n}(\mathbb{R}) \), one can identify the tangent space \(T_A SL_n(\mathbb{R}) \) with a linear subspace of \(M_{n \times n}(\mathbb{R}) \), cf. Problem 2. Prove that \(T_I SL_n(\mathbb{R}) \) is the set of matrices with trace equal to 0.