We consider the system of linear equations $Ax = b$, where A is a nonsingular matrix.

1. We consider the case when A is Hermitian and positive definite matrix in $\mathbb{C}^{n \times n}$ and x^0 is an arbitrary vector in \mathbb{C}^n. As usual we split $A = D - E - F$, where D is the diagonal of A, E is the strictly lower triangular matrix and F is strictly upper triangular matrix.

 Consider the following two step iteration consisting of forward and backward Gauss-Seidel sweeps (called symmetric Gauss-Seidel):

 $$(D - F)x^{m+1} = Ex^m + b, \quad (D - E)x^{m+2} = Fx^{m+1} + b \text{ for } m = 0, 2, \ldots.$$

 (a) Present this as a product iteration in the form $x^{s+1} = Gx^s + Bb$;

 (b) Prove that the iteration converges.

2. Following the above idea formulate a symmetric SOR iteration (called SSOR).

3. Let A be strongly diagonally dominant, i.e. $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for $j = 1, \ldots, n$. Prove that:

 (a) Jacobi iteration converges;

 (b) Gaus-Seidel iteration converges.