THE REPRESENTATION RING AND THE CENTRE OF A HOPF ALGEBRA

SARAH J. WITHERSPOON

Abstract. When H is a finite dimensional, semisimple, almost cocommutative Hopf algebra, we examine a table of characters which extends the notion of the character table for a finite group. We obtain a formula for the structure constants of the representation ring in terms of values in the character table, and give the example of the quantum double of a finite group. We give a basis of the centre of H which generalizes the conjugacy class sums of a finite group, and express the class equation of H in terms of this basis. We show that the representation ring and the centre of H are dual character algebras (or signed hypergroups).

1. Introduction

Let H be a finite dimensional Hopf algebra over an algebraically closed field k. Its representation ring $R(H)$ is the \mathbb{C}-algebra generated by finite dimensional H-modules with direct sum for addition, tensor product for multiplication, and the trivial module for the identity. If H is semisimple (that is, as an associative algebra), its representation ring (or character ring) is as well, allowing generalization of some of the theory of characters for finite groups to Hopf algebras. This has been done for example by Larson [8], Nichols and Richmond [18], and Zhu [26], and Lorenz [10] treats the nonsemisimple case in particular. Such character theory for Hopf algebras has been useful in studying the structure of the Hopf algebras themselves in work by Lorenz [11], Nichols and Richmond [17], Sommerhäuser [22], and Zhu [26].

Here we require that H be almost cocommutative as well as semisimple, and obtain some further results. Many examples of interest satisfy this hypothesis, including the quasitriangular Hopf algebras. In this case the representation ring $R(H)$ is semisimple and commutative, and so isomorphic to a direct sum of copies of \mathbb{C}. Each copy corresponds to a character of $R(H)$, that is an algebra homomorphism from $R(H)$
to \(\mathbb{C} \). These characters happen to be trace functions of certain central elements defined in \(\S 4 \). We consider a \textit{character table}, whose rows are indexed by isomorphism classes of irreducible \(H \)-modules, and whose columns are indexed by the characters of \(R(H) \). This extends the notion of the character table for a finite group. We present orthogonality relations for these characters in \(\S 3 \). This leads to a formula (Theorem 3.2) for structure constants of the representation ring \(R(H) \) in terms of the character values, generalizing a well known formula in the case \(H \) is a group algebra [23]. We discuss the example of the quantum double of a finite group, for which character values may be given in terms of characters of the group and its centralizer subgroups [25].

We use these results about characters to obtain a basis for the centre \(Z(H) \) in case \(k = \mathbb{C} \) in \(\S 4 \); in the case of a group algebra this basis is given by the conjugacy class sums. The class equation for a finite group may be described as applying the augmentation \(\epsilon \) to the sum of these basis elements. We generalize this observation in Proposition 4.3, providing a new way to view the class equation for Hopf algebras (due to Kac [7] and Zhu [26]) in the special case where \(H \) is almost cocommutative. We use Lorenz’ proof of the class equation [11] for this result. We show that in case \(H \) has prime power dimension, the nontrivial central grouplike elements of Masuoka [15] are among our basis elements for \(Z(H) \).

We use the basis of \(Z(H) \) constructed in \(\S 4 \) to show in Theorem 5.2 that when \(k = \mathbb{C} \), the representation ring \(R(H) \) and the centre \(Z(H) \) are \textit{dual character algebras} (or \textit{C-algebras}) [1], as well as \textit{signed hypergroups} [24], providing more such examples. Such algebras generalize the duality between the character ring and the centre of a group algebra. For a history of character algebras, hypergroups, and further references, see [1, 3, 24]. The ideas in \(\S 5 \) grew out of questions raised by Terwilliger.

We refer the reader to [16] for standard facts about Hopf algebras, and to [5] for standard facts about characters of finite groups and symmetric algebras. All our modules will be finite dimensional right modules, \(k \) always denotes an algebraically closed field, and \(\otimes = \otimes_k \).

2. The representation ring

In this section, we first review the standard notation and terminology, then collect some needed results from the literature about the representation ring.
Let H be a finite dimensional Hopf algebra over the algebraically closed field k with coproduct Δ, counit (or augmentation) ϵ, and antipode S [16]. We use sigma notation for Δ [16], that is, if $h \in H$, we write $\Delta(h) = \sum_{(h)} h_1 \otimes h_2$.

Let V and W be finite dimensional right H-modules. Then $V \otimes W$ is a right H-module via the pullback of the natural action of $H \otimes H$ on $V \otimes W$ from the coproduct $\Delta : H \rightarrow H \otimes H$. This is a right H-module since Δ is an algebra homomorphism. The field k is a right H-module via the pullback of the action of k on itself, by right multiplication, to H from the counit $\epsilon : H \rightarrow k$. Up to isomorphism, this trivial module k is a multiplicative identity with respect to tensor product of modules; this follows from the counit property of a Hopf algebra.

If V is a finite dimensional right H-module, we write V^* for the dual module $\text{Hom}_k(V, k)$ with right H-action given by

$$f \cdot h(v) = f(v \cdot S(h))$$

for all $f \in V^*$, $h \in H$, and $v \in V$. This is a right action since S reverses multiplication. If V and W are two finite dimensional H-modules, then the natural isomorphism of vector spaces $(V \otimes W)^* \cong W^* \otimes V^*$ is an isomorphism of H-modules; this follows from the fact that S reverses comultiplication.

Next we define an action of H on $\text{Hom}_k(V, W)$ for any two finite dimensional right H-modules V, W, so that $\text{Hom}_k(V, W)$ will be isomorphic to $V^* \otimes W$ as right H-modules: If $f \in \text{Hom}_k(V, W)$ and $h \in H$, define $f \cdot h \in \text{Hom}_k(V, W)$ by

$$(2.1) \quad f \cdot h(v) = \sum_{(h)} f(v \cdot S(h_1))h_2$$

for all $v \in V$.

We define certain representation rings. Let $r(H)$ be the group generated by isomorphism classes of finite dimensional H-modules with direct sum for addition. This is the Grothendieck group of the category of finite dimensional H-modules, in which the distinguished exact sequences are taken to be the split ones. The additive group $r(H)$ becomes a ring with tensor product for multiplication, and identity given by the isomorphism class of the trivial module. Associativity of $r(H)$ follows from coassociativity of the coproduct for H. We refer to both $r(H)$ and $R(H) = r(H) \otimes \mathbb{C}$ as representation rings. We work primarily with $R(H)$, as our main interest is in characters. If H is semisimple, then $R(H)$ is isomorphic to the character ring of H (over \mathbb{C}) via the map sending an H-module V to its trace function $\text{Tr}(\cdot, V)$ (see [10, 26]). By abuse of language and notation, we shall consider
H-modules to be elements of the representation rings, when we really mean their isomorphism classes.

We will need the following two propositions, due to Zhu [26, Lemmas 1 and 2]; here we translate from left to right modules. Let $\delta_{V,W} = 1$ if $V \cong W$ and 0 otherwise, and let V^H be the submodule of V on which H acts trivially:

$$V^H := \{ v \in V \mid v \cdot h = \epsilon(h)v \text{ for all } h \in H \}.$$

Proposition 2.2 below technically required the characteristic of the underlying field k to be 0, however Zhu’s proof holds more generally. It uses the fact that S^2 is an inner automorphism, so that in particular $(V^*)^* \cong V$ for all H-modules V. This is always the case when H is semisimple [20, Theorem 5].

Proposition 2.1 (Zhu). Suppose H is a finite dimensional semisimple Hopf algebra, and V and W are finite dimensional H-modules. Then $\text{Hom}_H(V, W) \cong (V^* \otimes W)^H$ as vector spaces. In particular, if V and W are irreducible, then the multiplicity of the trivial module k as a direct summand of $V^* \otimes W$ is $\delta_{V,W}$.

Proposition 2.2 (Zhu). Suppose H is a finite dimensional semisimple Hopf algebra. Then the representation ring $R(H)$ is semisimple.

We assume from now on that H is semisimple. As in [10] and [18], we define a bilinear form on $r(H)$ by

$$(V, W) := \dim_k \text{Hom}_H(V, W)$$

for all H-modules V, W. We extend it to an inner product on $R(H) = r(H) \otimes \mathbb{C}$ as follows. Let V_1, \ldots, V_n be the irreducible H-modules up to isomorphism, with $V_1 = k$, and $x = \sum_{i=1}^{n} a_i V_i$, $y = \sum_{i=1}^{n} b_i V_i$ elements of $R(H)$. Define

$$(x, y) := \sum_{i,j=1}^{n} a_i \overline{b_j} (V_i, V_j) = \sum_{i=1}^{n} a_i \overline{b_i},$$

where $\overline{b_j}$ is the complex conjugate of b_j. The norm of x is

$$\| x \| := \sqrt{(x, x)}.$$

Extend the dual map on modules to a conjugate linear map on $R(H)$ by defining

$$x^* := \sum_{i=1}^{n} a_i V_i^*.$$
Then we see as in [10] or [18] that the inner product satisfies the following properties for all $x, y, z \in R(H)$:

\[(x^*, y^*) = (x, y) = (y, x), \]

and

\[(xy, z) = (y, x^*z). \]

Equation (2.2) follows from the definitions, and (2.3) follows from the isomorphisms $\text{Hom}_H(U \otimes V, W) \cong (V^* \otimes U^* \otimes W)^H \cong \text{Hom}_H(V, U^* \otimes W)$ given by Proposition 2.1.

The remaining observations in this section were made by Zhu [26] and Nichols and Richmond [18]. Let $x \in R(H)$, and write $x = \sum_{i=1}^n a_i V_i$. Then

\[x x^* = \sum_{i,j=1}^n a_i a_j V_i V_j^*. \]

By Proposition 2.1, the coefficient of the trivial module k in $x x^*$ is then

\[\sum_{i=1}^n a_i a_i = \|x\|^2. \]

Thus $x = 0$ if and only if $x x^* = 0$. Letting E_1, \ldots, E_r be the primitive central idempotents of the semisimple representation ring $R(H)$, we see that $E_i E_i^* \neq 0$. But E_i^* is also a primitive central idempotent, as \ast is an algebra anti-isomorphism. Therefore

\[E_i = E_i^*. \]

3. Orthogonality and Structure Constants

We continue under the assumption that H is a finite dimensional semisimple Hopf algebra over the algebraically closed field k, so that its representation ring $R(H)$ is semisimple by Proposition 2.2. In addition we assume that H is almost cocommutative, that is there exists an invertible element $R \in H \otimes H$ such that for all $h \in H$,

\[\tau(\Delta(h)) = R \Delta(h) R^{-1}, \]

where τ is the twist map given by $\tau(a \otimes b) = b \otimes a$. In this case, $V \otimes W \cong W \otimes V$ for all H-modules V, W, the isomorphism given by the twist map followed by the natural action of R. Therefore the representation ring $R(H)$ is a finite dimensional, semisimple, commutative \mathbb{C}-algebra, and so is isomorphic to a direct sum of copies of \mathbb{C}. Each copy corresponds to a character of $R(H)$, that is an algebra homomorphism from $R(H)$ to \mathbb{C}. Note that the set of characters of $R(H)$ is linearly independent.

We consider a character table associated to H, whose rows are indexed by isomorphism classes of irreducible H-modules, and whose
columns are indexed by the characters of $R(H)$. The entries are the characters evaluated on the modules (considered as elements of $R(H)$). In the case of a group algebra $\mathbb{C}G$ of a finite group G, this is precisely the usual character table of G: The characters of $R(\mathbb{C}G)$ are the trace functions $\text{Tr}(g, \cdot)$ of representatives $g \in G$ of conjugacy classes (or equivalently trace functions of normalized sums of conjugacy classes). This is because group elements $g \in G$ are group-like elements in the Hopf algebra $\mathbb{C}G$ (that is, $\Delta(g) = g \otimes g$). In §4 we will define more generally central elements z_i of H whose trace functions are precisely the characters of $R(H)$. Here we give orthogonality relations for the characters and a formula for the structure constants of the representation ring $R(H)$ in terms of the character values.

We will need the following proposition due to Nichols and Richmond [18]. However as their approach involves comodules, we include a proof here for convenience.

Proposition 3.1 (Nichols-Richmond). Let μ be a character of the representation ring $R(H)$, and $x \in R(H)$. Then $\mu(x^*) = \overline{\mu(x)}$, the complex conjugate of $\mu(x)$.

Proof. Let E_i be a primitive central idempotent of $R(H)$, and μ_i the corresponding character. We claim that $\mu_i(y) = (y, E_i)/\|E_i\|^2$ for all $y \in R(H)$: Write $y = \sum_{j=1}^n c_j E_j$ so that $\mu_i(y) = c_i$. On the other hand, by (2.3) and (2.4),

$$
\frac{(y, E_i)}{\|E_i\|^2} = \frac{1}{\|E_i\|^2} \sum_{j=1}^n (c_j E_j, E_i) = \frac{1}{\|E_i\|^2} \sum_{j=1}^n c_j (1, E_j^* E_i) = \frac{1}{\|E_i\|^2} c_i (E_i, E_i) = c_i.
$$

It follows that, by (2.2) and (2.4),

$$
\mu_i(x^*) = \frac{1}{\|E_i\|^2} (x^*, E_i) = \frac{1}{\|E_i\|^2} (x, E_i^*) = \overline{\mu_i(x)}.
$$

\square
We consider a different form on $R(H)$ that is symmetric: Define
\[\langle V, W \rangle := \dim_k \text{Hom}_H(V^*, W) \]
for all H-modules V, W. This generates a nondegenerate, bilinear, symmetric, associative form by Proposition 2.1 (see also [10, §3.1] and [11, §2.2]). Therefore $R(H)$ is a symmetric algebra with dual bases \(\{V_1, \ldots, V_n\} \) and \(\{V_1^*, \ldots, V_n^*\} \), where V_1, \ldots, V_n are the irreducible H-modules, as noted in [11]. We now give a formula for the primitive central idempotents of $R(H)$ and orthogonality relations for characters, as provided by [5, §9B] for symmetric algebras via dual bases. We point out that our characters are the irreducible characters of $[5]$.

Let
\[M := \bigoplus_{i=1}^n (V_i^* \otimes V_i). \]

As H is semisimple, $H \cong \bigoplus_{i=1}^n \text{End}_k(V_i)$ as an algebra. Using (2.1), it may be checked that M is isomorphic to the H-module H where $h \in H$ acts on $h' \in H$ by the adjoint action
\[h' \cdot h = \sum_{(h)} S(h_1)h'h_2. \]

Let μ be a character of $R(H)$, and note that
\[\mu(M) = \sum_{i=1}^n \mu(V_i^*)\mu(V_i) = \sum_{i=1}^n \| \mu(V_i) \|^2 > 0, \]
by Proposition 3.1. This also follows from [5, Proposition 9.17 (ii)]. We have the corresponding primitive central idempotent of $R(H)$ [5, Proposition 9.17 (ii)],
\[E_\mu = \frac{1}{\mu(M)} \sum_{i=1}^n \mu(V_i)V_i^*. \]

Orthogonality relations are given as follows. For any character μ of $R(H)$, we write μ^* for the character defined by
\[\mu^*(V) := \mu(V^*), \]
for all H-modules V. We caution that $E_{\mu^*} \neq (E_\mu)^*$. Let μ_1, \ldots, μ_n be the characters of $R(H)$. Then we have the column orthogonality relations by [5, Proposition 9.19] (see also [18, Corollary 22]),
\[\sum_{i=1}^n \mu_i(V_\ell^*)\mu_j^*(V_\ell) = \delta_{ij} \mu_i(M). \]
In other words, the product of the transpose \((\mu_i(V_j))\) of the character table matrix with the matrix \((\mu^*_j(V_i))\) is a diagonal matrix with diagonal entries \(\mu_i(M)\). Multiplying by the appropriate diagonal matrices, we obtain two inverse matrices. Multiplying them in the reverse order yields the row orthogonality relations,

\[
\sum_{\ell=1}^{n} \frac{\mu^*_i(V_i)\mu_\ell(V_j)}{\mu_\ell(M)} = \delta_{ij}.
\]

As we see next, the row orthogonality relations may be used to obtain a formula for the structure constants in \(R(H)\). This is well known in the case \(H\) is a group algebra \([23]\).

Theorem 3.2. Let \(H\) be a finite dimensional, semisimple, almost cocommutative Hopf algebra. Let \(V_1, \ldots, V_n\) be the irreducible \(H\)-modules up to isomorphism, \(\mu_1, \ldots, \mu_n\) the characters of \(R(H)\), and suppose that \(V_i \otimes V_j \cong \bigoplus_{h=1}^{n} V_h^{\otimes N_{ij}^h}\) for \(1 \leq i, j \leq n\). Then

\[
N_{ij}^h = \sum_{\ell=1}^{n} \frac{\mu^*_i(V_i)\mu_\ell(V_j)}{\mu_\ell(M)},
\]

where \(M\) is the module defined in (3.1).

Proof. For each pair \(i, j\), consider the \(n\) equations

\[
\mu_\ell(V_i)\mu_\ell(V_j) = \sum_{h=1}^{n} N_{ij}^h \mu_\ell(V_h).
\]

Solving these systems of equations for the \(N_{ij}^h\) by using the row orthogonality relations (3.6), we obtain the desired result. \(\square\)

Example: The quantum double of a finite group. Let \(G\) be a finite group. The quantum double (or Drinfel’d double) \(D(G)\) is a smash product of the group algebra \(kG\) with its Hopf algebra dual \((kG)^*\). Specifically, the space \((kG)^* \otimes kG\) is given the structure of a Hopf algebra as follows. If \(\{\phi_g\}_{g \in G}\) is the basis of \((kG)^*\) dual to \(\{g\}_{g \in G}\), then \(D(G)\) has as a basis all elements \(\phi_g \otimes h\), which we write more simply as \(\phi_g h\), for \(g, h \in G\). On this basis, the product is defined by \(\phi_g h \phi_g h' = \phi_g \phi_{g^{-1}h} h h' = \delta_{g, h_g^{-1}} \phi_g h h'\). The identity is \(1_{D(G)} = \sum_{g \in G} \phi_g 1\), where 1 is the identity for \(G\). The coproduct is given by \(\Delta(\phi_g h) = \sum_{x \in G} \phi_x h \otimes \phi_{x^{-1}g} h\), the counit by \(\epsilon(\phi_g h) = \delta_{1, g}\), and the coinverse by \(S(\phi_g h) = \phi_{g^{-1}h_g^{-1}} h^{-1}\). The Hopf algebra \(D(G)\) is almost cocommutative with \(R = \sum_{g \in G} \phi_g \otimes g\) (in fact, it is quasitriangular \([16, 10.1.5]\)). Maschke’s Theorem for Hopf algebras \([16, \text{Theorem 2.2.1}]\)
implies that $D(G)$ is semisimple if and only if the characteristic of k
does not divide the order of G [25, Proposition 1.2]. Thus we will
restrict ourselves to that case.

It is well known that the irreducible $D(G)$-modules are indexed by
pairs (g, V), where g is a representative of a conjugacy class of G, and
V is an irreducible $kC(g)$-module (here $C(g) = \{ h \in G \mid gh = hg \}$
is the centralizer of g in G). The resulting $D(G)$-modules are induced
from these $kC(g)$-modules. Different approaches to this result appear
in [13, 25]; see also [6] for the special case $k = \mathbb{C}$.

The characters of $R(D(G))$ are given explicitly in [25, Theorem 3.4],
and for the case $k = \mathbb{C}$, also in [12], in terms of characters of G and its
centralizer subgroups. The characters in the case $k = \mathbb{C}$ are indexed
by pairs (g, ρ), where g is a representative of a conjugacy class of G, and
ρ is an irreducible character of $C(g)$. The corresponding character
$\mu_{g, \rho}$ of $R(D(G))$ sends a $D(G)$-module V to [25, p. 316]

$$\mu_{g, \rho}(V) = \frac{1}{\deg \rho} \sum_{h \in C(g)} \rho(h) \text{Tr}(\phi_h g, V).$$

Let V_1, \ldots, V_n be the irreducible $D(G)$-modules over \mathbb{C} up to isomorphism, and suppose $V_i \otimes V_j \cong \oplus_{h} V_h^{N_{ij}^h}$. Then by Theorem 3.2,

$$N_{ij}^h = \sum_{(g, \rho)} \frac{\mu_{g, \rho}(V_h) \mu_{g, \rho}(V_i) \mu_{g, \rho}(V_j)}{\mu_{g, \rho}(M)},$$

the sum ranging over the pairs (g, ρ). The $D(G)$-module M is the space
$D(G)$ with right action

$$\phi_x y \cdot \phi_y h = \delta_{g, x^{-1} y^{-1} x y} \phi_{h^{-1} x h} h^{-1} y h.$$

We note that the values of the $\mu_{g, \rho}$ are sums of products of values
from the character tables of G and its centralizer subgroups, and thus
the structure constants may be calculated from the values in such char-
acter tables. Indeed, $\text{Tr}(\phi_h g, V) = \text{Tr}(g, V_h)$ where $V_h = V\phi_h$ may be
considered to be a $CC(h)$-module, as is discussed in [25, §2]. A dif-
f erent approach to characters for this example is given in [2], and an
apparently simpler formula than (3.7) for the structure constants is
given in [2, 6].

4. THE CENTRE AND THE CLASS EQUATION

In this section, we construct two bases for the centre $Z(H)$ of H, and
give a new presentation of the class equation of Kac [7] and Zhu [26]
using work of Lorenz [11]. We keep our assumptions that H is finite
dimensional, semisimple, and almost cocommutative. In addition, we take the field \(k \) to be \(\mathbb{C} \) here.

As before, let \(V_1, \ldots, V_n \) be the irreducible \(H \)-modules up to isomorphism (with \(V_1 = \mathbb{C} \) the trivial module), \(\mu_1, \ldots, \mu_n \) the characters of the representation ring \(R(H) \) (with \(\mu_1 \) the dimension homomorphism, \(\mu_1(V) = \dim(V) \) for all \(H \)-modules \(V \)), and \(E_1, \ldots, E_n \) the corresponding primitive central idempotents of \(R(H) \) as given by (3.4). As \(H \) is semisimple, we have \(H \cong \bigoplus_{i=1}^n \text{End}_\mathbb{C}(V_i) \) as an algebra. Let \(e_i \) be the primitive central idempotent of \(H \) corresponding to \(V_i \), that is \(e_i \) arises from the identity transformation of \(\text{End}_\mathbb{C}(V_i) \) in the above isomorphism. Define the elements \(z_i \) of \(Z(H) \) by

\[
(4.1) \quad z_i := \sum_{j=1}^n \frac{\mu_i(V_j)}{\dim(V_j)} e_j.
\]

As \((\mu_i(V_j)) \) is nonsingular by the orthogonality relations (3.5) and (3.6), the elements \(z_i \) are linearly independent, and thus form a basis of \(Z(H) \). Notice that \(\mu_i = \text{Tr}(z_i, \cdot) \), so in fact we may label the columns of the character table in \(\S3 \) with the elements \(z_i \) rather than \(\mu_i \). In the case \(H \) is a group algebra, we may use the formula [5, Proposition 9.21 (ii)] for the primitive central idempotents \(e_i \) to see that each of these elements \(z_i \) is a normalized sum of elements in a conjugacy class.

Example. When \(H = D(G) \) is the quantum double of the finite group \(G \) (\(\S3 \)), the basis elements \(z_i \) are indexed by pairs \((g, \rho)\), where \(g \) is a representative of a conjugacy class of \(G \), and \(\rho \) an irreducible character of \(C(g) \). They are given by

\[
z_{g, \rho} = \frac{1}{|G| \deg(\rho)} \sum_{h \in C(g), x \in G} \rho(h) \phi_{xh, x^{-1}gx} x g^{-1}.
\]

This follows from the observations that these elements \(z_{g, \rho} \) are central, and in general the central element \(z_i \) is determined uniquely by the fact that \(\mu_i = \text{Tr}(z_i, \cdot) \).

We will need the following two lemmas. The first generalizes the formula [5, Proposition 9.21 (ii)] for the primitive central idempotents \(e_i \) in the case \(H \) is a group algebra.

Lemma 4.1. \(e_i = \sum_{j=1}^n \frac{\mu_i^*(V_j) \dim(V_j)}{\mu_j(M)} z_j \).
Proof. By the definition (4.1) of z_i, we may express the z_i in terms of the e_j by means of the matrix equation
\[
\left(\frac{\mu_i(V_j)}{\dim(V_j)} \right) (e_j) = (z_i).
\]
By the column orthogonality relations (3.5), the inverse of the coefficient matrix is
\[
\left(\frac{\mu_i^*(V_i) \dim(V_i)}{\mu_j(M)} \right).
\]

Lemma 4.2. If $z_iz_j = \sum_{h=1}^{n} m_{ij}^h z_h$, then $m_{ij}^1 = \delta_{ij} \frac{\mu_i(M)}{\dim(H)}$.

Proof. Using the definition (4.1) of z_i and Lemma 4.1, we have
\[
z_iz_j = \sum_{\ell=1}^{n} \mu_i(V_\ell) \mu_j(V_\ell) c_\ell
\]
\[
= \frac{1}{\dim(H)} \sum_{\ell=1}^{n} \frac{\mu_i(V_\ell) \mu_j(V_\ell)}{\dim(V_\ell) \mu_h(M)} z_h.
\]
Therefore by the column orthogonality relations (3.5), as $\mu_i^*(V_\ell) = \mu_1(V_\ell) = \dim(V_\ell)$ and $\mu_1(M) = \dim(H)$,
\[
m_{ij}^1 = \frac{1}{\dim(H)} \sum_{\ell=1}^{n} \mu_i(V_\ell) \mu_j(V_\ell)
\]
\[
= \delta_{ij} \frac{\mu_i(M)}{\dim(H)}.
\]

We modify the basis $\{z_i\}$ of $Z(H)$ slightly. Let
\[
(4.2) \quad \zeta_i := \frac{\dim(H)}{\mu_i(M)} z_i,
\]
where $M = \oplus_{i=1}^{n} (V_i^* \otimes V_i)$ as before. In the case H is a group algebra, it may be checked, using (3.2), that each of these elements ζ_i is the sum of the elements in a conjugacy class. In this case, note too that the class equation may be described as applying the augmentation ϵ to the equation $|G|e_1 = \sum_{i=1}^{n} \zeta_i$, as $\epsilon(\zeta_i)$ is the number of elements in the corresponding conjugacy class, and $\epsilon(e_1) = 1$. We generalize this observation in the next proposition, providing a new way to view the class equation for Hopf algebras (due to Kac [7] and Zhu [26]) in the special case where H is almost cocommutative.
Let H^* denote the Hopf algebra dual to H [16, Example 1.5.5]. Identify the representation ring $R(H)$ with a subalgebra of H^* by identifying an H-module V with the trace function $\text{Tr}(\cdot, V)$ (this is the character ring as a subalgebra of H^*). In this way the primitive central idempotents E_1, \ldots, E_n of $R(H)$ may be considered to be elements of H^*.

Proposition 4.3 (Class Equation). If H is a finite dimensional, semisimple, almost cocommutative Hopf algebra over \mathbb{C}, then

$$\dim(H) = \sum_{i=1}^{n} \epsilon(\zeta_i).$$

Further, for all $1 \leq i \leq n$, $\epsilon(\zeta_i) = \dim(H)/\mu_i(M) = \dim(E_iH^*)$ is an integer dividing $\dim(H)$.

Proof. By Lemma 4.1, the definitions of ζ_i (4.2) and z_i (4.1), and as $\mu_i^*(V_1) = 1$ for all i,

$$\dim(H)e_1 = \sum_{i=1}^{n} \zeta_i.$$

Note that $\epsilon(e_i) = \delta_{1,i}$, as elements of H act on the trivial module $V_1 = k$ via ϵ. Therefore, by applying ϵ to the above equation, we obtain

$$\dim(H) = \sum_{i=1}^{n} \epsilon(\zeta_i).$$

Again by the definitions of ζ_i and z_i, we have $\epsilon(z_i) = \mu_i(k)/\dim(k) = 1$, and $\epsilon(\zeta_i) = \dim(H)/\mu_i(M)$.

By Lorenz’ proof of the class equation [11, §3], under the hypothesis that H is almost cocommutative (and so $R(H)$ is commutative), we have

$$\frac{\dim(H)}{\dim(E_iH^*)} = \mu_i(M),$$

and is an integer. Therefore $\dim(H)/\mu_i(M) = \dim(E_iH^*)$ is an integer dividing $\dim(H)$ for $1 \leq i \leq n$. \hfill \Box

For each index $i \in \{1, \ldots, n\}$ of the characters μ_1, \ldots, μ_n, let $i^* \in \{1, \ldots, n\}$ be the index satisfying $\mu_{i^*} = \mu_{i}^*$, where $\mu_{i}^*(V) := \mu_i(V^*)$ for all H-modules V. In particular then, $\mu_{i^*} = \text{Tr}(z_{i^*}, \cdot)$.

Suppose $\dim(H) = p^n$, with p a prime. For example, the quantum double (or Drinfel’d double) of any of Masuoka’s semisimple Hopf algebras of dimension p^3 [14] is a semisimple [19] and almost cocommutative (in fact, quasitriangular by [4, Proposition 4.2.12]) Hopf algebra of dimension p^3. We obtain central grouplike elements of H via the class equation in the following way. By Proposition 4.3, as $\zeta_1 = 1$, there
is some $i \neq 1$ such that $1 = \epsilon(\zeta_i) = \dim(H)/\mu_i(M) = \dim(E_i H^*)$.

From the assumption $\dim(E_i H^*) = 1$, Masuoka proved that H has a nontrivial central grouplike element [15]. In our case, we use Schneider’s formulation of Masuoka’s result [21] to show that ζ_i^* is the corresponding (central) grouplike element: First note that as $M^* \cong M$ and $\epsilon(\zeta_i^*) = \dim(H)/\mu_i^*(M)$, we have $\epsilon(\zeta_i^*) = \epsilon(\zeta_i) = 1$. Now let $\lambda \in H^*$ be a nonzero integral (that is, λ is invariant under left and right multiplication in H^*) such that $\lambda(1) = 1$. By (4.1), (4.2), the proof and statement of [21, Proposition 4.5], and (3.4), ζ_i^* is the unique element $h \in Z(H)$ such that $h \to \lambda = E_i$. (Here $h \to \lambda := \sum(\lambda) \lambda_2(h) \lambda_1$.) By [21, Lemma 4.14 (2)], there exists a nontrivial central grouplike element g such that E_i is a scalar multiple of $g \to \lambda$. By uniqueness, and as $\epsilon(\zeta_i^*) = 1$, ζ_i^* is forced to be grouplike.

5. Dual Character Algebras

Let H be a finite dimensional, semisimple, almost cocommutative Hopf algebra over \mathbb{C}. We use the results of the previous sections to show that the representation ring $R(H)$ and the centre $Z(H)$ are dual character algebras.

First we recall the definition from [1]. A character algebra (or C-algebra) is a finite dimensional commutative algebra A over \mathbb{C} together with a distinguished basis X_1, \ldots, X_n such that $X_1 = 1$ is the multiplicative identity of A and:

1. There is an involution $i \mapsto i^*$ of $\{1, \ldots, n\}$ such that the linear map from A to A sending X_i to X_{i^*} is a \mathbb{C}-algebra isomorphism.
2. If $X_i X_j = \sum_{h=1}^n p_{ij}^h X_h$, then $p_{ij}^h \in \mathbb{R}$ $(1 \leq h, i, j \leq n)$.
3. There are positive real numbers k_1, \ldots, k_n such that $p_{ij}^1 = \delta_{ij} k_i$ $(1 \leq i, j \leq n)$.
4. The linear map from A to \mathbb{C} sending X_i to k_i is a \mathbb{C}-algebra homomorphism.

We point out that if we take instead the normalized basis $\{X_i/k_i\}$ of A, we have a signed hypergroup [24], as in this case the sum over h of the structure constants p_{ij}^h (for fixed i and j) is 1 by property (4).

Let V_1, \ldots, V_n be the irreducible H-modules up to isomorphism (with $V_1 = \mathbb{C}$ the trivial module), and

\begin{equation}
X_i := \dim(V_i) V_i \quad (1 \leq i \leq n)
\end{equation}

as elements of $R(H)$. Let μ_1, \ldots, μ_n be the characters of $R(H)$, with μ_1 the dimension homomorphism $\mu_1(V) = \dim(V)$ for all H-modules.
V. Let \(\zeta_1, \ldots, \zeta_n \) be the central elements of \(H \) defined in (4.2), so that \(\zeta_1 = 1 \) is the multiplicative identity.

Theorem 5.1. Let \(H \) be a finite dimensional, semisimple, almost co-commutative Hopf algebra over \(\mathbb{C} \). Then:

(i) The representation ring \(R(H) \) is a character algebra with basis \(X_1, \ldots, X_n \).

(ii) The centre \(Z(H) \) is a character algebra with basis \(\zeta_1, \ldots, \zeta_n \).

Proof. (i) Let \(i^* \) be the element such that \(X_i^* = X_i^* \), \(i = \dim(V_i) \). Then the linear map sending \(X_i \) to \(X_i^* \) is simply the map taking any element to its “dual,” and is a \(\mathbb{C} \)-algebra isomorphism. As \(V_i V_j = \sum_{h=1}^n N_{ij}^h V_h \) in \(R(H) \) with \(N_{ij}^h \) positive integers, we have

\[
X_i X_j = \sum_{h=1}^n p_{ij}^h X_h
\]

with \(p_{ij}^h = \dim(V_i) \dim(V_j) N_{ij}^h / \dim(V_h) \) rational numbers. We also then have \(p_{ij}^1 = \dim(V_i) \dim(V_j) N_{ij}^1 \). By Proposition 2.1, \(N_{ij}^1 = \delta_{ij^*} \), so \(p_{ij}^1 = \delta_{ij^*} k_i \), with \(k_i = (\dim(V_i))^2 \) a positive integer. Finally, the linear map from \(R(H) \) to \(\mathbb{C} \) sending \(X_i \) to \(k_i \) is just the dimension homomorphism \(\mu_1 \). Therefore \(R(H) \) is a character algebra.

(ii) First note that \(S \) is an involution on the basis \(\zeta_1, \ldots, \zeta_n \): Recall that \(e_i \) is the identity map on \(V_i \). Therefore \(S(e_i) \) is the identity map on \(V_i^* = V_{i^*} \), that is \(S(e_i) = e_{i^*} \), as \(S^2 \) is an inner automorphism [20, Theorem 5] and \(e_i \) is central in \(H \). By (4.1) and (4.2) then,

\[
S(\zeta_i) = \sum_{j=1}^n \frac{\dim(H) \mu_i(V_j)}{\mu_i(M) \dim(V_j)} e_{j^*}
\]

\[
= \sum_{j=1}^n \frac{\dim(H) \mu_i(V_j^*)}{\mu_i(M) \dim(V_j^*)} e_j
\]

\[
= \sum_{j=1}^n \frac{\dim(H) \mu_i^*(V_j)}{\mu_i^*(M) \dim(V_j)} e_j,
\]

as \(\mu_i(M) = \mu_i^*(M) \) by the definition (3.1) of \(M \). Thus \(S(\zeta_i) \) is another element of the basis \(\zeta_1, \ldots, \zeta_n \), that corresponding to \(\mu_i^* = \mu_{i^*} \). Therefore \(S(\zeta_i) = \zeta_{i^*} \), and \(* \) is an involution on the indices \(\{1, \ldots, n\} \). As the coinverse \(S \) is an algebra antihomomorphism on \(H \), it is an algebra homomorphism on \(Z(H) \). This shows that property (1) in the definition of character algebra holds for \(Z(H) \).

Next note that the function \(f_\ell: Z(H) \to \mathbb{C} \) defined by

\[
f_\ell(z) := (1/ \dim(V_\ell)) \text{Tr}(z, V_\ell)
\]
is an algebra homomorphism: If $z, z' \in \mathcal{Z}(H)$, write $z = \sum_{i=1}^{n} c_i e_i$ and $z' = \sum_{i=1}^{n} c'_i e_i$. Then $f_\ell(z) = c_\ell$, $f_\ell(z') = c'_\ell$, and

$$f_\ell(zz') = \frac{1}{\dim(V_\ell)} \text{Tr} \left(\sum_{i=1}^{n} c_i c'_i e_i, V_\ell \right) = c_\ell c'_\ell = f_\ell(z) f_\ell(z').$$

We will first work with the basis z_1, \ldots, z_n of $\mathcal{Z}(H)$. Suppose that

$$z_i z_j = \sum_{h=1}^{n} m_{ij}^h z_h.$$

Applying f_ℓ to this equation we obtain

$$(5.2) \quad f_\ell(z_i) f_\ell(z_j) = \sum_{h=1}^{n} m_{ij}^h f_\ell(z_h).$$

Similarly, applying f_{ℓ^*} we obtain

$$f_{\ell^*}(z_i) f_{\ell^*}(z_j) = \sum_{h=1}^{n} m_{ij}^h f_{\ell^*}(z_h).$$

As $f_{\ell^*}(z_i) = (1/\dim(V_\ell)) \text{Tr}(z_i, V_\ell^*)$, and $\text{Tr}(z_i, \cdot) = \mu_i$ is a character of $R(H)$, Proposition 3.1 implies that the latter equation may be rewritten as

$$(5.3) \quad f_\ell(z_i) \cdot f_\ell(z_j) = \sum_{h=1}^{n} m_{ij}^h \cdot f_\ell(z_h).$$

On the other hand, taking the complex conjugate of (5.2), we have

$$\overline{f_\ell(z_i)} \cdot \overline{f_\ell(z_j)} = \sum_{h=1}^{n} \overline{m_{ij}^h} \cdot \overline{f_\ell(z_h)}.$$

We obtain $\sum_{h=1}^{n} m_{ij}^h \overline{\text{Tr}(z_h, V_\ell)} = \sum_{h=1}^{n} \overline{m_{ij}^h} \cdot \overline{\text{Tr}(z_h, V_\ell)}$ by comparing to (5.3). As the V_ℓ form a basis for $R(H)$, we have

$$\sum_{h=1}^{n} m_{ij}^h \cdot \overline{\text{Tr}(z_h, \cdot)} = \sum_{h=1}^{n} \overline{m_{ij}^h} \cdot \overline{\text{Tr}(z_h, \cdot)}.$$

But the functions $\text{Tr}(z_h, \cdot) = \mu_h$ are linearly independent, so $m_{ij}^h = \overline{m_{ij}^h}$. Therefore m_{ij}^h is a real number for all h, i, j.

Now let $\zeta_i \zeta_j = \sum_{h=1}^{n} p_{ij}^h \zeta_h$. As $\zeta_i = (\dim(H)/\mu_i(M))z_i$, we have

$$p_{ij}^h = \frac{\mu_h(M) \dim(H)}{\mu_i(M) \mu_j(M)} m_{ij}^h.$$

By (3.3), $\mu_i(M)$ is a real number. As a result, p_{ij}^h is a real number, and $\mathcal{Z}(H)$ satisfies property (2) of the definition of a character algebra.
By Lemma 4.2, the above paragraph, and as \(\mu_1 \) is the dimension homomorphism, we have

\[
p^1_{ij} = \delta_{ij} \frac{\mu_1(M) \dim(H) \mu_i(M)}{\mu_i(M) \mu_j(M) \dim(H)} = \delta_{ij} \frac{\dim(H)}{\mu_j(M)}.
\]

By Proposition 4.3, \(k_i := \dim(H)/\mu_i(M) \) is a positive integer. Therefore \(Z(H) \) satisfies property (3) of the definition of a character algebra.

Finally, consider the linear map from \(Z(H) \) to \(\mathbb{C} \) sending \(\zeta_i \) to \(k_i = \dim(H)/\mu_i(M) \). By Proposition 4.3, this is just the counit \(\epsilon \). It follows that \(Z(H) \) satisfies property (4) of the definition of character algebra.

Next we recall the definition of dual character algebras and show that \(R(H) \) and \(Z(H) \) are dual. If \(A \) is a character algebra with basis \(X_1, \ldots, X_n \), then \(A \) is semisimple [1, Proposition 2.5.4]. Let \(E_1, \ldots, E_n \) be a basis of primitive central idempotents of \(A \). Let \(P = (p_{ij}) \) be the \(n \times n \) matrix such that

\[
X_i = \sum_{j=1}^{n} p_{ji} E_j \quad (1 \leq i \leq n),
\]

called the matrix of eigenvalues of \(A \).

Let \(A \) and \(A^* \) be character algebras with bases \(X_1, \ldots, X_n \) and \(X_1^*, \ldots, X_n^* \), respectively. Let \(E_1, \ldots, E_n \) and \(E_1^*, \ldots, E_n^* \) be bases of primitive central idempotents, and \(P \) and \(P^* \) the matrices of eigenvalues of \(A \) and \(A^* \), respectively. Then \(A \) and \(A^* \) are dual if \(PP^* \) is a multiple of the identity matrix.

Theorem 5.2. Let \(H \) be a finite dimensional, semisimple, almost co-commutative Hopf algebra over \(\mathbb{C} \). Then the representation ring \(R(H) \) and the centre \(Z(H) \) are dual character algebras.

Proof. Consider the basis elements \(X_1, \ldots, X_n \) of \(R(H) \) as defined in (5.1), and primitive idempotents \(E_1, \ldots, E_n^* \) (in that order) corresponding to the characters \(\mu_i^* = \mu_i^* \). Letting

\[
X_i = \sum_{j=1}^{n} p_{ji} E_j^*
\]

and applying \(\mu_i^* \), we have \(\mu_i^*(X_i) = p_{ji} \) as \(\mu_i^*(E_j^*) = \delta_{ij} \). On the other hand, \(\mu_i^*(X_i) = \dim(V_i) \mu_i^*(V_i) \). So \(p_{ij} = \dim(V_j) \mu_i^*(V_j) \).

Consider the basis elements \(\zeta_1, \ldots, \zeta_n \) of \(Z(H) \) as defined in (4.2), and primitive central idempotents \(e_1, \ldots, e_n \) corresponding to the irreducible \(H \)-modules \(V_1, \ldots, V_n \) as before. By the definitions (4.1) and
(4.2), we have
\[
\zeta_i = \sum_{j=1}^{n} \frac{\dim(H) \mu_i(V_j)}{\mu_i(M) \dim(V_j)} e_j.
\]
Thus if \(P^* \) is the matrix of eigenvalues of \(Z(H) \), we have
\[
P^*_{ij} = \frac{\dim(H) \mu_j(V_i)}{\mu_j(M) \dim(V_i)}.
\]
By the column orthogonality relations (3.5), we have
\[
(P P^*)_{ij} = \sum_{\ell=1}^{n} \frac{\mu^*_i(V_\ell) \dim(H) \mu_j(V_\ell)}{\mu_j(M)}
= \frac{\dim(H)}{\mu_j(M)} \sum_{\ell=1}^{n} \mu^*_i(V_\ell) \mu_j(V_\ell)
= \delta_{ij} \dim(H),
\]
so \(P P^* \) is a multiple of the identity matrix. Therefore \(R(H) \) and \(Z(H) \)
are dual character algebras. \(\square \)

REFERENCES

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 3G3, Canada
E-mail address: sjw@math.toronto.edu