7.2: VOLUME

A simple type of solid: right cylinder

Let S be any solid. The intersection of S with a plane is a plane region that is called a **cross-section** of S.

P_x is a plane perpendicular to x-axis and passing through x.

$A(x)$ is the area of cross-section obtained as intersection of S and P_x, $a \leq x \leq b$.

(Think of slicing a loaf of bread.)
DEFINITION 1. Let S be a solid that lies between the planes P_a and P_b. Then the volume of S is

$$V = \lim_{\|P\| \to 0} \sum_{i=1}^{n} A(x^*_i) \Delta x_i =$$

Important to remember: $A(x)$ is the area of a moving cross-section obtained by slicing through x perpendicular to the x-axis.

EXAMPLE 2. Find the volume of the cap of a ball with radius 3 and height 1.
Volumes of Solids of Revolution (Disk Method)

Consider the plane region D bounded by the curves $y = f(x), y = 0, x = a, x = b$, i.e.

$$D =$$

Rotate D about a given axis to get the solid of revolution S:

PROBLEM: Determine the volume of solid of revolution.

Solution: Using cross-sectional areas (disk method)
EXAMPLE 3. Determine the volume of the solid obtained by rotating the region

\[D = \{(x, y) : 1 \leq x \leq 4, 0 \leq y \leq x^2 - 4x + 5\} \]

about the x-axis.

EXAMPLE 4. Determine the volume of the solid obtained by rotating the region enclosed by

\[y = x^3, \quad y = 8, \quad x = 0 \]

about the y-axis.
EXAMPLE 5. Determine the volume of the solid obtained by rotating the region enclosed by \(y = \ln x, \ y = 0, \ y = 5 \ x = 0 \) about the \(y \)-axis.

EXAMPLE 6. Determine the volume of the solid obtained by rotating the region enclosed by the curves \(y = \sqrt[3]{x}, \ x = 8, \ y = 0 \) about the line \(x = 8 \).
EXAMPLE 7. Determine the volume of the solid obtained by rotating the region enclosed by \(y = \tan x \), \(y = 1 \) and the \(y \)-axis about the line \(y = 1 \).

\[
\begin{array}{c|c}
\text{SUMMARY (Disk Method)} \\
\hline
\text{Rotation about a horizontal axis (} y = k \text{): } V = \int_a^b A(x) \, dx \\
\text{Rotation about a vertical axis (} x = k \text{): } V = \int_a^b A(y) \, dy \\
\text{Cross sections are orthogonal to the axis of rotating.}
\end{array}
\]
Washer Method

Use it when the cross-sections orthogonal to the axis of rotating of a solid of revolution are in the shape of a washer (ring).

The area of a ring:

\[
\pi (R^2 - r^2)
\]

EXAMPLE 8. Let \(D \) be the plane region that lies in the first quadrant and enclosed by \(y = \sqrt{x} \) and \(y = \frac{x}{4} \).

(a) Determine the volume of the solid obtained by rotating the region \(D \) about the y-axis.
(b) Determine the volume of the solid obtained by rotating the region D about the x-axis.

EXAMPLE 9. Let D be the region enclosed by $y = x$ and $y = x^2$.

(a) Determine the volume of the solid obtained by rotating the region D about the line $x = -1$.
(b) Determine the volume of the solid obtained by rotating the region D about the line $y = 2$.

More general case: Cross Sections other than Circles

Use the basic formula:

$$ V = \int_a^b A(x) \, dx $$

EXAMPLE 10. Find the volume of the solid whose base is a disk with radius 5 and the cross sections perpendicular to the y-axis are equilateral triangles.
EXAMPLE 11. The base of the solid S is the triangular region with the vertices $(0,0), (1,0)$ and $(0,1)$. Find the volume of S if the cross sections perpendicular to the x-axis are semicircles with diameters on the base.