20: Step functions. Differential equations with discontinuous forcing functions (sections 6.3 and 6.4)

1. Consider the n-th order linear ODE with constant coefficients:
 \[a_n y^{(n)} + a_{n-1} y^{(n-1)} + a_1 y' + a_0 y = g(t), \]
 where \(g(t) \) is a piecewise continuous function (function with jump discontinuities).

Jump discontinuities occur naturally in engineering problems such as electrical circuits with on/off switches. To handle such behavior, Heaviside introduced the following step function.

2. **Unit Step Function** \(u_c(t) \) \((c \geq 0)\) is defined by
 \[
 u_c(t) = \begin{cases}
 0, & 0 \leq t < c \\
 1, & t \geq c
 \end{cases}
 \]

3. When a function \(f(t) \) defined for \(t \geq 0 \) is multiplied by \(u_c(t) \), this unit step function "turns off" a portion of the graph of that function. For example, consider \((t^2 + 1)u_3(t)\).

4. **FACT 1.** Any function with jump discontinuities at \(t = c_1, c_2, \ldots, c_k \) can be represented in terms of unit step functions. In other words, we can use unit step function to write a piecewise-defined functions in a compact form.

5. Express \(f \) in terms of unit step function
 \[
 (a) \ f(t) = \begin{cases}
 4, & 0 \leq t < 3 \\
 1, & 3 \leq t < 5 \\
 -2, & 5 \leq t
 \end{cases}

 (b) \ f(t) = \begin{cases}
 g(t), & 0 \leq t < a \\
 h(t), & a \leq t
 \end{cases}

 (c) \ f(t) = \begin{cases}
 3, & 0 \leq t < 2 \\
 1, & 2 \leq t < 3 \\
 t, & 3 \leq t < 5 \\
 t^2, & 5 \leq t
 \end{cases}

6. **FACT 2.** **Translation in \(t \) property** for Laplace Transform: if \(F(s) = \mathcal{L}\{f(t)\} \) then
 \[
 F(s) = \mathcal{L}\{u_c(t)f(t-c)\} = e^{-cs} F(s).
 \]

7. Find \(\mathcal{L}\{u_c(t)\} \)

8. Duality between Laplace transform and its inverse:
 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{Derivative} & \mathcal{L}\{f'(t)\} = sF(s) - f(0) & \mathcal{L}^{-1}\{F'(s)\} = -tf(t) \\
 \text{Translation} & \mathcal{L}\{e^{at}f(t)\} = F(s-a) & \mathcal{L}^{-1}\{e^{-cs}F(s)\} = u_c(t)f(t-c) \\
 \hline
 \end{array}
 \]
9. Let \(f(t) \) will be the same as in 5(c). Find \(\mathcal{L}\{f\} \).

10. Find the inverse Laplace transform of

\[
H(s) = \frac{e^{-4s}}{s^2 + 9} + \frac{se^{-3s}}{s^2 + 4}
\]

11. Let

\[
g(t) = \begin{cases}
20, & 0 \leq t < 3\pi, \\
0, & 3\pi \leq t < 4\pi \\
20, & 4\pi \leq t
\end{cases}
\]

(a) Solve IVP:

\[
y'' + 2y' + 2y = g(t), \quad y(0) = 10, \quad y'(0) = 0,
\]

Solution:

\textbf{Step 1.} Express \(g(t) \) in compact form.

\textbf{Step 2.} Find \(\mathcal{L}\{g\} = G(s) \).

\textbf{Step 3.} Find \(\mathcal{L}\{y'' + 2y' + 2y\} \).

\textbf{Step 4.} Combine steps 2\& 3 to get \(\mathcal{L}\{y(t)\} = Y(s) \).

\textbf{Step 5.} Apply inverse Laplace transform to find \(y(t) \). This step usually requires partial fraction decomposition.

(b) Sketch the graph of \(y(t) \).