10.2: SERIES

A series is a sum of sequence:

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$

For a given sequence\(^1\) \{a_k\}_k=1^\infty define the following:

\[
\begin{align*}
S_1 &= a_1 \\
S_2 &= S_1 + a_2 = a_1 + a_2 \\
S_3 &= S_2 + a_3 = a_1 + a_2 + a_3 \\
S_4 &= S_3 + a_4 = a_1 + a_2 + a_3 + a_4 \\
\vdots &\quad \vdots \\
S_n &= S_{n-1} + a_n = \sum_{k=1}^{n} a_k \\
\end{align*}
\]
The s_n's are called **partial sums** and they form a sequence $\{s_n\}_{n=1}^\infty$.

We want to consider the limit of $\{s_n\}_{n=1}^\infty$:

$$
\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k \sim \sum_{k=1}^{\infty} a_k
$$

If $\{s_n\}_{n=1}^\infty$ is convergent and $\lim_{n \to \infty} s_n = s$ exists as a real number, then the series $\sum_{k=1}^{\infty} a_k$ is **convergent**. The number s is called the sum of the series.\(^2\)

If $\{s_n\}_{n=1}^\infty$ is divergent then the series $\sum_{k=1}^{\infty} a_k$ is **divergent**.

\(^2\)When we write $\sum_{k=1}^{\infty} a_k = s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s.
GEOMETRIC SERIES

\[a + ar + ar^2 + \ldots + ar^{n-1} + \ldots = \sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^n \quad (a \neq 0) \]

Each term is obtained from the preceding one by multiplying it by the common ratio \(r \).

FACT: The geometric series is convergent if \(|r| < 1 \) and its sum is

\[\sum_{n=1}^{\infty} ar^{n-1} = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}. \]

If \(|r| \geq 1 \), the geometric series is divergent.
EXAMPLE 1. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.

(a) \(\sum_{n=1}^{\infty} 5 \cdot \left(\frac{2}{7} \right)^{n-1} = \sum_{n=1}^{\infty} \frac{10}{7} \cdot \left(\frac{2}{7} \right)^{n-1} \)

\[\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{2}{7} \]

\[s = \frac{a}{1-r} = \frac{10/7}{1-2/7} = \frac{10}{5} = 2 \]

(b) \(\sum_{n=0}^{\infty} \frac{(-4)^3}{5^{n-1}} = \sum_{n=0}^{\infty} \frac{(-64)}{5^n} \)

\[s = \sum_{n=0}^{\infty} \left(\frac{-64}{5} \right)^n \]

\[r = -\frac{64}{5} < -1 \]

(c) \(1 - \frac{3}{2} + \frac{9}{4} - \frac{27}{8} + \ldots = \sum_{n=0}^{\infty} \left(\frac{3}{2} \right)^n \)

\[a = 1, \quad r = -\frac{3}{2} < -1 \]

\[\text{geometric series divergent} \]
\[
\sum_{n=1}^{\infty} 4^{n+1} \cdot 9^{2-n} = \sum_{n=1}^{8} \frac{4^{n+1} \cdot 9^{-(n-2)}}{9^{n-2}} = \sum_{n=1}^{8} \frac{4^{n+1}}{9^{n-1}} = \sum_{n=1}^{8} \frac{4^{n+1}}{9^{n-1} \cdot 9} = \sum_{n=1}^{8} \frac{4^{n+1}}{9^{n-1}}
\]

Geometric: \(a = 144 \)
\(r = \frac{4}{9} \)
\(S = \frac{a}{1-r} = \frac{144}{1-\frac{4}{9}} = \frac{1296}{5} \)
EXAMPLE 2. Write the number \(.\overline{17} \) as a ratio of integers.

\[
.\overline{17} = \frac{m}{n}
\]

\[
.\overline{17} = .171717171717\ldots = .17 + .0017 + .000017 + \ldots
\]

\[
= .17 + .0017 \cdot 10^{-2} + .000017 \cdot 10^{-4} + \ldots
\]

\[
= .17 \cdot 10^{-2} + .0017 \cdot 10^{-4} + \ldots
\]

Geometric series

with \(a = .17 \)

\(r = 10^{-2} = .01 \)

Convergent \(\frac{a}{1-r} \) \(|r| < 1 \)

\[
.\overline{17} = \frac{a}{1-r} = \frac{.17}{1-0.01} = \frac{17}{99}
\]
TELESCOPING SUM

Let \(b_n \) be a given sequence. Consider the following series:

\[
\sum_{n=1}^{\infty} (b_n - b_{n+1})
\]

\[
a_n = b_n - b_{n+1}
\]

Partial sum

\[
S_n = a_1 + a_2 + \ldots + a_n = b_1 - b_2 + b_2 - b_3 + \ldots + b_{n-1} - b_n + b_n - b_{n+1}
\]

\[
= b_1 - b_{n+1}
\]

The sum of telescoping series (if it converges)

\[
S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (b_1 - b_{n+1})
\]

\[
S = b_1 - \lim_{n \to \infty} b_{n+1}
\]

Question: Are these series telescoping?

\[
\sum_{n=1}^{\infty} b_{n+1} - b_n
\]

\[
\sum_{n=1}^{\infty} b_{n+2} - b_n
\]

\[
\sum_{n=1}^{\infty} b_n - b_{n+3}
\]
EXAMPLE 3. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.

(a) \(\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} - \sin \frac{1}{n+1} \right) = \sum_{n=1}^{\infty} b_n - b_{n+1} \) \[\text{Telescoping} \]

\[b_n = \sin \frac{1}{n} \]

\[S_n = b_1 - \lim_{n \to \infty} b_{n+1} = \sin 1 - \lim_{n \to \infty} \sin \frac{1}{n+1} \]

\[\text{convergent and } S = \sin 1 \]

(b) \(\sum_{n=1}^{\infty} \ln \frac{n+1}{n+2} = \sum_{n=1}^{\infty} \frac{\ln (n+1) - \ln (n+2)}{b_n} \) \[\text{Telescoping} \]

\[\phi = b_1 - \lim_{n \to \infty} b_{n+1} = \ln 2 - \lim_{n \to \infty} \ln (n+2) = -\infty \]

(c) \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \)

Use partial fraction decomposition. \(\frac{1}{n(n+1)} = \frac{A}{n} + \frac{B}{n+1} = \frac{1}{n} - \frac{1}{n+1} \)

\[l = A(n+1) + Bn \]

\[n = -1 \Rightarrow B = 1 \]

\[n = 0 \Rightarrow A = 1 \] \[\text{Telescoping} \]

\[S = \lim_{n \to \infty} S_n = b_1 - \lim_{n \to \infty} b_{n+1} = 1 - \lim_{n \to \infty} \frac{1}{n+1} = \boxed{1} \]

\[\text{sum convergent} \]
THEOREM 4. If the series \(\sum_{n=1}^{\infty} a_n \) is convergent, then \(\lim_{n \to \infty} a_n = 0 \).

REMARK 5. The converse is not necessarily true.

THE TEST FOR DIVERGENCE:
If \(\lim_{n \to \infty} a_n \) does not exist or if \(\lim_{n \to \infty} a_n \neq 0 \), then the series \(\sum_{n=1}^{\infty} a_n \) is divergent.

REMARK 6. If you find that \(\lim_{n \to \infty} a_n = 0 \) then the Divergence Test fails and thus another test must be applied.
EXAMPLE 7. Use the test for Divergence to determine whether the series diverges.

(a) \[\sum_{n=1}^{\infty} \frac{n^2}{3(n+1)(n+2)} \]

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{3(n+1)(n+2)} = \frac{1}{3} \neq 0 \]

The series diverges

(b) \[\sum_{n=1}^{\infty} \cos \frac{\pi n}{2} \]

\[\lim_{n \to \infty} \cos \frac{\pi n}{2} \text{ DNE because } \]

n is odd \(\Rightarrow \) \(\cos \frac{\pi n}{2} \neq 0 \)

n is even \(\Rightarrow \) \(\cos \frac{\pi n}{2} = \pm 1 \) (oscillating)

The series diverges

(c) \[\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \]

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n^2} = 0 \]

\(\therefore \)

\[\lim_{n \to \infty} a_n = 0 \]

Divergence Test Fails here. Thus, to make a conclusion we have to use some other test. (See Next Sections)