11.1: Three-dimensional Coordinate System

The three-dimensional coordinate system consists of the origin O and the coordinate axes: x-axis, y-axis, z-axis. The coordinate axes determine 3 coordinate planes: the xy-plane, the xz-plane and yz-plane. The coordinate planes divide space into 8 parts, called octants.
Representation of point \(P(a, b, c) \) and its projections on the coordinate planes:

- \((0, b, c)\) projection of \(P \) onto the \(yz \)-plane
 - \(xy \)-plane \(\Rightarrow z = 0 \)
 - \(yz \)-plane \(\Rightarrow x = 0 \)
 - \(xz \)-plane \(\Rightarrow y = 0 \)

\((a, 0, c)\) projection of \(P \) onto the \(xz \)-plane

\((a, b, 0)\) is projection of \(P \) onto the \(xy \)-plane
Example. Graph the following regions:

(a) \(x = 4 \) in \(\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3 \)

(b) \(x^2 + y^2 = 1 \) in \(\mathbb{R}^2, \mathbb{R}^3 \).
• **Distance formula in** \mathbb{R}^3: The distance between the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ is

$$|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}.$$

EXAMPLE 1. *Find an equation of a sphere with radius r and center*

(a) $O(0, 0, 0)$;

|OA| = r

$$\sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2} = r$$

$$x^2 + y^2 + z^2 = r^2$$

(b) $P(a, b, c)$.

|PA| = r

$$\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} = r$$

$$(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2$$
EXAMPLE 2. Show that the equation \(x^2 + y^2 + z^2 + x - 2y + 6z - 2 = 0 \) represents a sphere, and find its center and radius.

Complete square \((a \pm b)^2 = a^2 \pm 2ab + b^2\)

\[
\left(x + \frac{1}{2} \right)^2 + \left(y - 1 \right)^2 + \left(z + 3 \right)^2 = 2
\]

\[
\left(x + \frac{1}{2} \right)^2 + \left(y - 1 \right)^2 + \left(z + 3 \right)^2 = 2 + \frac{1}{4} + 1 + 9 = 12 + \frac{1}{4} - \frac{9}{4}
\]

We have equation of sphere centered at \((-\frac{1}{2}, 1, -3)\) with \(r = \sqrt{\frac{49}{4}} = \frac{7}{2} \)