Linear HOMOGENEOUS ODE of second order

8. Question: Can the function \(y = \sin(t^2) \) be a solution on the interval \((-1, 1)\) of a second order linear homogeneous equation with continuous coefficients?

9. Consider a linear homogeneous ODE

\[
y'' + p(t)y' + q(t)y = 0
\]

(2)

with coefficients \(p \) and \(q \) continuous in an interval \(I \).

10. Superposition Principle

- Sum \(y_1(t) + y_2(t) \) of any two solutions \(y_1(t) \) and \(y_2(t) \) of (2) is itself a solution.
- A scalar multiple \(Cy(t) \) of any solution \(y(t) \) of (2) is itself a solution.

COROLLARY 3. Any linear combination \(C_1y_1(t) + C_2y_2(t) \) of any two solutions \(y_1(t) \) and \(y_2(t) \) of (2) is itself a solution.

\[
y_1 = \cos t \\
y_2 = 5 \cos t \\
y = c_1y_1 + c_2y_2 = c_1 \cos t + 5c_2 \cos t = C \cos t
\]
11. Why Superposition Principle is important? Once two solutions of a linear homogeneous equation are known, a whole class of solutions is generated by linear combinations of these two.

\[y'' + p(t)y' + q(t)y = 0 \quad (1) \]
\[y(t_0) = y_0, \quad y'(t_0) = V_0 \quad (1*) \]

IVP:
\[y(t) = C_1 y_1(t) + C_2 y_2(t) \quad (2) \]

Assume that \(y_1(t) \) and \(y_2(t) \) are particular solutions of \((1) \). By Superposition Principle, \(y(t) \) is also solution of \((1) \).

\((2) \) is solution of IVP if and only if there exist \(C_1 \) and \(C_2 \) such that solution \((2) \) satisfies the initial conditions \((1*) \).

\[
\begin{array}{c|c}
\text{\(y(t_0) \)} & \text{\(C_1 \) \(y_1(t_0) \) \(+ \) \(C_2 \) \(y_2(t_0) \)} \\
\text{\(y'(t_0) \)} & \text{\(C_1 \) \(y_1'(t_0) \) \(+ \) \(C_2 \) \(y_2'(t_0) \)} \\
\end{array}
\]

By Cramer’s Rule

\[
W(y_1, y_2)(t_0) = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix} \neq 0 \quad \text{then the above system has unique solution \(C_1, C_2 \)}
\]

\[
C_1 = \frac{y_0 - y_2(t_0)}{W(y_1, y_2)(t_0)} \quad \text{and} \quad C_2 = \frac{y_1(t_0) - y_1(t_0)}{W(y_1, y_2)(t_0)}
\]

12. Wronskian of the functions \(y_1(t) \) and \(y_2(t) \):

\[
W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}
\]
13. Suppose that \(y_1(t)\) and \(y_2(t)\) are two differentiable solutions of (2) in the interval \(I\) such that
\(W(y_1, y_2)(t) \neq 0\) somewhere in \(I\), then every solution is a linear combination of \(y_1(t)\) and \(y_2(t)\).

In other words, the family of solutions \(y(t) = C_1y_1(t) + C_2y_2(t)\) with arbitrary coefficients \(C_1\) and \(C_2\) includes every solution of (2) if and only if there is a points \(t_0\) where \(W(y_1, y_2)\) is not zero. In this case the pair \((y_1(t), y_2(t))\) is called the fundamental set of solutions of (2).

Remark 4. Wronskian \(W(y_1, y_2)(t)\) (of any two solutions \(y_1(t)\) and \(y_2(t)\) of (2)) either is zero for all \(t\) or else is never zero.

For example, if \(y_1 = \cos t\), \(y_2 = 5 \cos t\) then

\[
W(y_1, y_2) = \begin{vmatrix}
\cos t & 5 \cos t \\
-\sin t & -5 \sin t
\end{vmatrix} = -5 \cos t \sin t - (-5 \cos t \sin t) = 0
\]

\[
\{y_1, y_2\} = \{\cos t, 5 \cos t\} \text{ is NOT fundamental set}
\]

And thus \(c_1 \cos t + c_2 \cdot 5 \cos t\) is not general solution of ODE of 2nd order.
14. Confirm that $\sin x$ and $\cos x$ are solutions of $y'' + y = 0$. Then solve the IVP

$$y'' + y = 0, \quad y(\pi) = 0, \quad y'(\pi) = -5$$

$$y_1(x) = \sin x \implies y_1''(x) + \sin x = -\sin x + \sin x = 0$$

$$y_2(x) = \cos x \implies y_2'' + y_2 = (\cos x)'' + \cos x = -\cos x + \cos x = 0$$

Solve IVP. Determine whether $\{y_1, y_2\}$ is fundamental set (\Rightarrow **Wrong** if $W(y_1, y_2) = 0$).

$$W(y_1, y_2) = \begin{vmatrix} \sin x & \cos x \\ \cos x & -\sin x \end{vmatrix} = -\sin^2 x - \cos^2 x$$

$$= -\left(\sin^2 x + \cos^2 x \right) = -1 \neq 0$$

$\{y_1, y_2\} = \{\sin x, \cos x\}$ is fundamental set,

$$y(t) = c_1 \sin x + c_2 \cos x \text{ is general solution}$$
Solve IVP: Find c_1, c_2 such that

$$y(t) = c_1 \sin t + c_2 \cos t$$

satisfies initial conditions

$$y(\pi) = 0, \quad y'(\pi) = -5$$

\[
y' = c_1 \cos t - c_2 \sin t
\]

\[
y(\pi) = c_1 \cdot 0 + c_2 \cdot (-1) = 0 \implies c_2 = 0
\]

\[
y'(\pi) = -c_1 + c_2 \cdot 0 = -5 \implies c_1 = 5
\]

Solution of IVP:

$$y(t) = 5 \sin t$$
Appendix: Facts from Algebra

1. FACT 1: Cramer’s Rule for solving the system of equations

\[\begin{align*}
 a_1x + b_1y &= c_1 \\
 a_2x + b_2y &= c_2
\end{align*} \]

The rule says is that if the determinant of the coefficient matrix is not zero, i.e.

\[\left| \begin{array}{cc}
 a_1 & b_1 \\
 a_2 & b_2
\end{array} \right| \neq 0, \]

then the system has a unique solution \((x,y)\) given by

\[x = \frac{\left| \begin{array}{cc}
 c_1 & b_1 \\
 c_2 & b_2
\end{array} \right|}{\left| \begin{array}{cc}
 a_1 & b_1 \\
 a_2 & b_2
\end{array} \right|}, \quad y = \frac{\left| \begin{array}{cc}
 a_1 & c_1 \\
 a_2 & c_2
\end{array} \right|}{\left| \begin{array}{cc}
 a_1 & b_1 \\
 a_2 & b_2
\end{array} \right|} \]
• FACT 2: If determinant of the coefficient matrix is zero then either there is no solution, or there are infinitely many solutions.

• FACT 3. The homogeneous system of linear equations

\[a_1 x + b_1 y = 0 \]
\[a_1 x + b_2 y = 0 \]

always has the “trivial” solution \((x, y) = (0, 0)\). By Cramer’s rule this is the only solution if the determinant of the coefficient matrix is not zero.

• FACT 4: If determinant of the coefficient matrix of homogeneous system of linear equations is zero then there are infinitely many nontrivial solutions \((x, y) \neq (0, 0)\).
2. Use Facts 1-4 to determine if each the following systems of linear equations has one solution, no solution, infinitely many solutions. Then find the solution(s) (if any).

(a) \[\begin{align*}
2x + 3y &= 5 \\
x - y &= 4
\end{align*} \]

\[\begin{vmatrix}
2 & 3 \\
1 & -1
\end{vmatrix} = -2 - 3 = -5 \neq 0 \]

\[\Rightarrow \text{the system has a unique solution} \]

\[x = \frac{5 - 12}{-5} = \frac{-7}{-5} = \frac{7}{5}, \quad y = \frac{1 - 4}{-5} = \frac{-3}{-5} = \frac{3}{5} \]

\[(x, y) = \left(\frac{7}{5}, \frac{3}{5} \right) \]
(b) \[2x - 2y = 4 \]
 \[x - y = 7 \]

(c) \[2x - 2y = 0 \]
 \[3x + 3y = 0 \]

(d) \[2x - 2y = 0 \]
 \[3x - 3y = 0 \]