1. (15) State the definitions of the following expressions/terms.

(a) \(\lim_{x \to 2^-} f(x) = \infty \)
This means that for any \(N \) there is a \(\delta \) such that if \(0 < 2 - x < \delta \), then \(f(x) > N \).

(b) \(f \) is continuous at the point \(x = 3 \).
To say that \(f \) is continuous at \(x = 3 \) means that 3 is in the domain of \(f \) and that \(\lim_{x \to 3} f(x) = f(3) \).

(c) The derivative of \(f \) at the point \(x = 5 \).
\[f'(5) = \lim_{h \to 0} \frac{f(5 + h) - f(5)}{h}. \]

2. (15) The graph of \(f(x) \) is shown below. Use it to answer the following questions.

(a) \(\lim_{x \to -2^+} f(x) = 1 \)
(b) \(\lim_{x \to -1^-} f(x) = 2 \)
(c) \(\lim_{x \to 1^+} f(x) = +\infty \)
(d) At what points \(a \) in the closed interval \([-2, 2]\) is \(f \) not continuous?
\(f \) is not continuous at the points \(x = -2, 1, \) and 2.
(e) At what points \(a \) in the open interval \((-2, 2)\) does \(\lim_{x \to a} f(x) \) not exist?
The \(\lim_{x \to a} f(x) \) does not exist at the only one point \(a = 1 \).

3. (10) Prove, using the definition, that \(\lim_{x \to 2} (3x - 1) = 5 \).

Let \(\epsilon > 0 \), pick \(\delta = \epsilon/3 \). If \(0 < |x - 2| < \frac{\epsilon}{3} \), then we must have
\[
|3x - 1 - 5| = |3x - 6| = 3|x - 2| < 3\frac{\epsilon}{3} = \epsilon
\]
4. (15) Evaluate the following limits

(a) \(\lim_{{x \to 1^+}} \frac{|x|}{x} = \lim_{{x \to 1^+}} \frac{|x|}{x} = \frac{1}{1} = 1 \)

(b) \(\lim_{{x \to \infty}} \frac{x^2 - 3x + 1}{10x + 2 - 3x^2} = \lim_{{x \to \infty}} \frac{1 - 3/x + 1/x^2}{10/x + 2/x^2 - 3} = \frac{1}{-3} = \frac{-1}{3} \)

(c) \(\lim_{{x \to 2}} (3x^2 - 6) = 6 \)

5. (20) Let \(f(x) = 3x^2 + 1 \).

(a) Using the definition of the derivative calculate \(f'(2) \).

\[
\begin{align*}
 f'(2) &= \lim_{{h \to 0}} \frac{f(2 + h) - f(2)}{h} \\
 &= \lim_{{h \to 0}} \frac{3(2 + h)^2 + 1 - 13}{h} \\
 &= \lim_{{h \to 0}} \frac{3(4 + 4h + h^2) - 12}{h} \\
 &= \lim_{{h \to 0}} \frac{12h + 3h^2}{h} = \lim_{{h \to 0}} (12 + 3h) \\
 &= 12
\end{align*}
\]

(b) Find the equation for the tangent line to the graph of \(f \) at the point \((2, 13) \).

\[
\begin{align*}
 \frac{y - 13}{x - 2} &= 12 \\
 y - 13 &= 12(x - 2)
\end{align*}
\]

6. (10) Find a vector equation for the line passing through the two points \((-1, 3)\) and \((-2, 6)\), then find an equation for this same line in the from \(y = f(x) \).

\[
\overrightarrow{r}(t) = \langle -1, 3 \rangle + t(\langle -2, 6 \rangle - \langle -1, 3 \rangle) \\
= \langle -1, 3 \rangle + t(\langle -1, 3 \rangle)
\]

To find a \(y = f(x) \) equation for this line, solve the equation \(x = -1 - t \) for \(t \). This gives \(t = -1 - x \). Now substitute this expression for \(t \) into the equation for \(y \).

\[
\begin{align*}
y &= 3 + 3t \\
 &= 3 + 3(-1 - x) \\
 &= -3x
\end{align*}
\]
7. (15) Let \(\mathbf{r}(t) = (3t^2 - t, t^3 + 1) \) give the position of a particle at time \(t \) in seconds.

(a) Plot this curve for \(-1 \leq t \leq 1\). Be especially careful around \(t = 0 \).

\[t = 0 \quad (\frac{-1}{12}, 1 + \frac{1}{216}) \quad t = \frac{1}{3} \]

\[(2, 0) \]

(b) What is the velocity of the particle at \(t = 0 \) and \(t = 1/2 \).

\[\mathbf{v}(t) = \frac{d}{dt}(3t^2 - t, t^3 + 1) = (6t - 1, 3t^2) \]

\[\mathbf{v}(0) = (-1, 0) \]

\[\mathbf{v}(1/2) = (2, 3/4) \]

(c) What is the speed of the particle at \(t = 0 \) and \(t = 1/2 \).

Speed is the magnitude of velocity so

\[s(t) = \left((6t - 1)^2 + 9t^4 \right)^{1/2} \]

\[s(0) = 1 \]

\[s(1/2) = \left(4 + \frac{9}{16} \right)^{1/2} = \left(\frac{73}{16} \right)^{1/2} = \frac{\sqrt{73}}{4} \]