1. (10 points) Find the inverse of $A = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 1 & 4 \\ 1 & 1 & 0 \end{pmatrix}$.

Use it to solve $XA = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 0 \end{pmatrix}$.
2. (10 points) Consider the polynomials

\[p_1(x) = 1 - x^2 \]
\[p_2(x) = 2 - x - x^2 \]
\[p_3(x) = 1 - x \]

and the vector space

\[W = \text{Span}(p_1, p_2, p_3). \]

Find a subset of \{p_1, p_2, p_3\} which is a basis for \(W \). Prove it spans \(W \) and is linearly independent.
3. Consider the vector space P_3, the set of polynomials of degree 3 or less?
 • (5 points) Scantron #1 Which of the following is NOT a subspace of P_3?
 a. $A = \{ p \in P_3 \mid p(0) = 0 \}$
 b. $B = \{ p \in P_3 \mid p(1) = 0 \}$
 c. $C = \{ p \in P_3 \mid p(0) = p(1) \}$
 d. $D = \{ p \in P_3 \mid p(0) + p(1) = 0 \}$
 e. $E = \{ p \in P_3 \mid p(0) = 1 \}$

4. Consider the vector space \mathbb{R}^+ of all positive real numbers with the operations of
 Vector Addition: $x \oplus y = xy$ (real number addition)
 Scalar Multiplication: $a \cdot x = x^a$ (real number exponentiation)
 • (5 points) Scantron #2 Translate the vector identity
 $0 \cdot x = 0$
 into ordinary arithmetic.
 a. $1^x = 1$
 b. $x^0 = 1$
 c. $0^x = 0$
 d. $x^1 = x$
 e. $0^x = 1$
5. Consider the linear map $L : \mathbb{R}^3 \rightarrow \mathbb{R}^4$ given by $L(\vec{x}) = A\vec{x}$ where $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}$.

- (10 points) Solve $L(\vec{x}) = \begin{pmatrix} 2 \\ -1 \\ 2 \\ 4 \end{pmatrix}$.

- (5 points) Scantron #3 Describe the solution set:
 a. No Solutions
 b. Unique Solution (Point in \mathbb{R}^3)
 c. ∞-Many Solutions (Line in \mathbb{R}^3)
 d. ∞-Many Solutions (Plane in \mathbb{R}^3)
 e. ∞-Many Solutions (All of \mathbb{R}^3)

- (5 points) Scantron #4 Is L a one-to-one function?
 a. Yes
 b. No
6. Again consider the linear map \(L : \mathbb{R}^3 \to \mathbb{R}^4 \) given by \(L(\vec{x}) = A\vec{x} \) where
\[
A = \begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & 2 \\
2 & 0 & 4 \\
3 & -1 & 4
\end{pmatrix}.
\]

- (10 points) Solve \(L(\vec{x}) = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \).

- (5 points) Scantron #5 Describe the solution set:
 a. No Solutions
 b. Unique Solution (Point in \(\mathbb{R}^3 \))
 c. \(\infty \)-Many Solutions (Line in \(\mathbb{R}^3 \))
 d. \(\infty \)-Many Solutions (Plane in \(\mathbb{R}^3 \))
 e. \(\infty \)-Many Solutions (All of \(\mathbb{R}^3 \))

- (5 points) Scantron #6 Is \(L \) an onto function?
 a. Yes
 b. No
7. Again consider the linear map \(L : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) given by \(L(\vec{x}) = A\vec{x} \) where \(A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix} \).

- (5 points) Find \(\text{Ker}(L) \), the kernel (or null space) of \(L \).

- (5 points) Give a basis for \(\text{Ker}(L) \). (No proof)

- (5 points) What is the dimension of \(\text{Ker}(L) \)? (No proof)
8. Again consider the linear map \(L : \mathbb{R}^3 \to \mathbb{R}^4 \) given by \(L(\vec{x}) = A\vec{x} \) where \[A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 4 \\ 3 & -1 & 4 \end{pmatrix}. \]

- (5 points) Find \(\text{Im}(L) \), the image (or range) of \(L \).

- (5 points) Give a basis for \(\text{Im}(L) \). (No proof)

- (5 points) What is the dimension of \(\text{Im}(L) \)? (No proof)