MATH 304
Linear Algebra

Lecture 27:
Norms and inner products.
Norm

The notion of norm generalizes the notion of length of a vector in \mathbb{R}^n.

Definition. Let V be a vector space. A function $\alpha : V \rightarrow \mathbb{R}$ is called a norm on V if it has the following properties:

(i) $\alpha(x) \geq 0$, $\alpha(x) = 0$ only for $x = 0$ (positivity)
(ii) $\alpha(rx) = |r| \alpha(x)$ for all $r \in \mathbb{R}$ (homogeneity)
(iii) $\alpha(x + y) \leq \alpha(x) + \alpha(y)$ (triangle inequality)

Notation. The norm of a vector $x \in V$ is usually denoted $\|x\|$. Different norms on V are distinguished by subscripts, e.g., $\|x\|_1$ and $\|x\|_2$.
Examples. \(V = \mathbb{R}^n, \; \mathbf{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n. \)

- \(\| \mathbf{x} \|_\infty = \max(|x_1|, |x_2|, \ldots, |x_n|). \)

Positivity and homogeneity are obvious.

The triangle inequality:

\[
|x_i + y_i| \leq |x_i| + |y_i| \leq \max_j |x_j| + \max_j |y_j|
\]

\[
\Rightarrow \max_j |x_j + y_j| \leq \max_j |x_j| + \max_j |y_j|
\]

- \(\| \mathbf{x} \|_1 = |x_1| + |x_2| + \cdots + |x_n| . \)

Positivity and homogeneity are obvious.

The triangle inequality:

\[
|x_i + y_i| \leq |x_i| + |y_i|
\]

\[
\Rightarrow \sum_j |x_j + y_j| \leq \sum_j |x_j| + \sum_j |y_j|
\]
Examples. $V = \mathbb{R}^n$, $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$.

- $\|x\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}$, $p > 0$.

Remark. $\|x\|_2 =$ Euclidean length of x.

Theorem $\|x\|_p$ is a norm on \mathbb{R}^n for any $p \geq 1$.

Positivity and homogeneity are still obvious (and hold for any $p > 0$). The triangle inequality for $p \geq 1$ is known as the Minkowski inequality:

$$\left(|x_1 + y_1|^p + |x_2 + y_2|^p + \cdots + |x_n + y_n|^p \right)^{1/p} \leq \left(|x_1|^p + \cdots + |x_n|^p \right)^{1/p} + \left(|y_1|^p + \cdots + |y_n|^p \right)^{1/p}.$$
Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: \(\text{dist}(x, y) = \| x - y \| \).

Then we say that a sequence \(x_1, x_2, \ldots \) *converges* to a vector \(x \) if \(\text{dist}(x, x_n) \to 0 \) as \(n \to \infty \).

Also, we say that a vector \(x \) is a good *approximation* of a vector \(x_0 \) if \(\text{dist}(x, x_0) \) is small.
Unit circle: \(\| x \| = 1 \)

\[
\| x \| = (x_1^2 + x_2^2)^{1/2} \quad \text{black}
\]

\[
\| x \| = \left(\frac{1}{2} x_1^2 + x_2^2 \right)^{1/2} \quad \text{green}
\]

\[
\| x \| = |x_1| + |x_2| \quad \text{blue}
\]

\[
\| x \| = \max(|x_1|, |x_2|) \quad \text{red}
\]
Examples. \(V = C[a, b], \ f : [a, b] \rightarrow \mathbb{R}. \)

- \(\|f\|_{\infty} = \max_{a \leq x \leq b} |f(x)|. \)
- \(\|f\|_1 = \int_a^b |f(x)| \, dx. \)
- \(\|f\|_p = \left(\int_a^b |f(x)|^p \, dx \right)^{1/p}, \ p > 0. \)

Theorem. \(\|f\|_p \) is a norm on \(C[a, b] \) for any \(p \geq 1. \)
Inner product

The notion of *inner product* generalizes the notion of dot product of vectors in \mathbb{R}^n.

Definition. Let V be a vector space. A function $\beta : V \times V \to \mathbb{R}$, usually denoted $\beta(x, y) = \langle x, y \rangle$, is called an *inner product* on V if it is positive, symmetric, and bilinear. That is, if

(i) $\langle x, x \rangle \geq 0$, $\langle x, x \rangle = 0$ only for $x = 0$ (positivity)
(ii) $\langle x, y \rangle = \langle y, x \rangle$ (symmetry)
(iii) $\langle rx, y \rangle = r\langle x, y \rangle$ (homogeneity)
(iv) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ (distributive law)

An *inner product space* is a vector space endowed with an inner product.
Examples. \(V = \mathbb{R}^n \).

- \(\langle x, y \rangle = x \cdot y = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n \).
- \(\langle x, y \rangle = d_1 x_1 y_1 + d_2 x_2 y_2 + \cdots + d_n x_n y_n \), where \(d_1, d_2, \ldots, d_n > 0 \).
- \(\langle x, y \rangle = (Dx) \cdot (Dy) \), where \(D \) is an invertible \(n \times n \) matrix.

Remarks. (a) Invertibility of \(D \) is necessary to show that \(\langle x, x \rangle = 0 \implies x = 0 \).

(b) The second example is a particular case of the third one when \(D = \text{diag}(d_1^{1/2}, d_2^{1/2}, \ldots, d_n^{1/2}) \).
Counterexamples. \(V = \mathbb{R}^2 \).

- \(\langle x, y \rangle = x_1 y_1 - x_2 y_2 \).

Let \(v = (1, 2) \), then \(\langle v, v \rangle = 1^2 - 2^2 = -3 \).
\(\langle x, y \rangle \) is symmetric and bilinear, but not positive.

- \(\langle x, y \rangle = 2x_1 y_1 + x_1 x_2 + 2x_2 y_2 + y_1 y_2 \).

\(v = (1, 1) \), \(w = (1, 0) \) \(\implies \) \(\langle v, w \rangle = 3 \), \(\langle 2v, w \rangle = 8 \).
\(\langle x, y \rangle \) is positive and symmetric, but not bilinear.

- \(\langle x, y \rangle = x_1 y_1 + x_1 y_2 - x_2 y_1 + x_2 y_2 \).

\(v = (1, 1) \), \(w = (1, 0) \) \(\implies \) \(\langle v, w \rangle = 0 \), \(\langle w, v \rangle = 2 \).
\(\langle x, y \rangle \) is positive and bilinear, but not symmetric.
Problem. Find an inner product on \(\mathbb{R}^2 \) such that
\[
\langle e_1, e_1 \rangle = 2, \quad \langle e_2, e_2 \rangle = 3, \quad \text{and} \quad \langle e_1, e_2 \rangle = -1,
\]
where \(e_1 = (1, 0), \ e_2 = (0, 1) \).

Let \(x = (x_1, x_2), \ y = (y_1, y_2) \in \mathbb{R}^2 \).

Then \(x = x_1 e_1 + x_2 e_2, \ y = y_1 e_1 + y_2 e_2 \).

Using bilinearity, we obtain
\[
\langle x, y \rangle = \langle x_1 e_1 + x_2 e_2, y_1 e_1 + y_2 e_2 \rangle
\]
\[
= x_1 \langle e_1, y_1 e_1 + y_2 e_2 \rangle + x_2 \langle e_2, y_1 e_1 + y_2 e_2 \rangle
\]
\[
= x_1 y_1 \langle e_1, e_1 \rangle + x_1 y_2 \langle e_1, e_2 \rangle + x_2 y_1 \langle e_2, e_1 \rangle + x_2 y_2 \langle e_2, e_2 \rangle
\]
\[
= 2x_1 y_1 - x_1 y_2 - x_2 y_1 + 3x_2 y_2.
\]

It remains to check that \(\langle x, x \rangle > 0 \) for \(x \neq 0 \).
\[
\langle x, x \rangle = 2x_1^2 - 2x_1 x_2 + 3x_2^2 = (x_1 - x_2)^2 + x_1^2 + 2x_2^2.
\]
Example. \(V = \mathcal{M}_{m,n}(\mathbb{R}) \), space of \(m \times n \) matrices.

- \(\langle A, B \rangle = \text{trace} (AB^T) \).

If \(A = (a_{ij}) \) and \(B = (b_{ij}) \), then \(\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij} \).

Examples. \(V = C[a, b] \).

- \(\langle f, g \rangle = \int_{a}^{b} f(x)g(x) \, dx \).

- \(\langle f, g \rangle = \int_{a}^{b} f(x)g(x)w(x) \, dx \),

where \(w \) is bounded, piecewise continuous, and \(w > 0 \) everywhere on \([a, b]\).

\(w \) is called the \textbf{weight} function.