MATH 304
Linear Algebra

Lecture 30:
The Gram-Schmidt process (continued).
Eigenvalues and eigenvectors.
Orthogonal projection
Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $x \in V$ is uniquely represented as $x = p + o$, where $p \in V_0$ and $o \perp V_0$.

The component p is the **orthogonal projection** of the vector x onto the subspace V_0. The distance from x to the subspace V_0 is $\|o\|$.

If v_1, v_2, \ldots, v_n is an orthogonal basis for V_0 then

$$p = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots + \frac{\langle x, v_n \rangle}{\langle v_n, v_n \rangle} v_n.$$
The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose x_1, x_2, \ldots, x_n is a basis for V. Let

$v_1 = x_1,$

$v_2 = x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1,$

$v_3 = x_3 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2,$

\[\cdots \]

$v_n = x_n - \frac{\langle x_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \cdots - \frac{\langle x_n, v_{n-1} \rangle}{\langle v_{n-1}, v_{n-1} \rangle} v_{n-1}.$

Then v_1, v_2, \ldots, v_n is an orthogonal basis for $V.$
\[\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = \text{Span}(\mathbf{x}_1, \mathbf{x}_2) \]
Any basis \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \) \quad \rightarrow \quad Orthogonal basis \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \)

Properties of the Gram-Schmidt process:

\(\bullet \) \(\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \cdots + \alpha_{k-1} \mathbf{x}_{k-1}), 1 \leq k \leq n; \)

\(\bullet \) the span of \(\mathbf{v}_1, \ldots, \mathbf{v}_k \) is the same as the span of \(\mathbf{x}_1, \ldots, \mathbf{x}_k; \)

\(\bullet \) \(\mathbf{v}_k \) is orthogonal to \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}; \)

\(\bullet \) \(\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k \), where \(\mathbf{p}_k \) is the orthogonal projection of the vector \(\mathbf{x}_k \) on the subspace spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}; \)

\(\bullet \) \(\| \mathbf{v}_k \| \) is the distance from \(\mathbf{x}_k \) to the subspace spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1}. \)
Problem. Find the distance from the point \(y = (0, 0, 0, 1) \) to the subspace \(V \subset \mathbb{R}^4 \) spanned by vectors \(x_1 = (1, -1, 1, -1) \), \(x_2 = (1, 1, 3, -1) \), and \(x_3 = (-3, 7, 1, 3) \).

First we apply the Gram-Schmidt process to vectors \(x_1, x_2, x_3 \) and obtain an orthogonal basis \(v_1, v_2, v_3 \) for the subspace \(V \). Next we compute the orthogonal projection \(p \) of the vector \(y \) onto \(V
:
\[p = \frac{\langle y, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle y, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \frac{\langle y, v_3 \rangle}{\langle v_3, v_3 \rangle} v_3. \]

Then the distance from \(y \) to \(V \) equals \(\| y - p \| \).

Alternatively, we can apply the Gram-Schmidt process to vectors \(x_1, x_2, x_3, y \). We should obtain an orthogonal system \(v_1, v_2, v_3, v_4 \). Then the desired distance will be \(\| v_4 \| \).
\[\mathbf{x}_1 = (1, -1, 1, -1), \quad \mathbf{x}_2 = (1, 1, 3, -1), \]
\[\mathbf{x}_3 = (-3, 7, 1, 3), \quad \mathbf{y} = (0, 0, 0, 1). \]

\[\mathbf{v}_1 = \mathbf{x}_1 = (1, -1, 1, -1), \]
\[\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1) \]
\[= (0, 2, 2, 0), \]
\[\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 \]
\[= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0) \]
\[= (0, 0, 0, 0). \]
The Gram-Schmidt process can be used to check linear independence of vectors!

The vector \(\mathbf{x}_3 \) is a linear combination of \(\mathbf{x}_1 \) and \(\mathbf{x}_2 \). \(V \) is a plane, not a 3-dimensional subspace.

We should orthogonalize vectors \(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y} \).

\[
\tilde{\mathbf{v}}_3 = \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2
\]

\[
= (0, 0, 0, 1) - \frac{-1}{4}(1, -1, 1, -1) - \frac{0}{8}(0, 2, 2, 0)
\]

\[
= (1/4, -1/4, 1/4, 3/4).
\]

\[
|\tilde{\mathbf{v}}_3| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} |(1, -1, 1, 3)| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}.
\]
Problem. Find the distance from the point $z = (0, 0, 1, 0)$ to the plane Π that passes through the point $x_0 = (1, 0, 0, 0)$ and is parallel to the vectors $v_1 = (1, -1, 1, -1)$ and $v_2 = (0, 2, 2, 0)$.

The plane Π is not a subspace of \mathbb{R}^4 as it does not pass through the origin. Let $\Pi_0 = \text{Span}(v_1, v_2)$. Then $\Pi = \Pi_0 + x_0$.

Hence the distance from the point z to the plane Π is the same as the distance from the point $z - x_0$ to the plane $\Pi - x_0 = \Pi_0$.

We shall apply the Gram-Schmidt process to vectors $v_1, v_2, z - x_0$. This will yield an orthogonal system w_1, w_2, w_3. The desired distance will be $\|w_3\|$.
\(\mathbf{v}_1 = (1, -1, 1, -1), \mathbf{v}_2 = (0, 2, 2, 0), \mathbf{z} - \mathbf{x}_0 = (-1, 0, 1, 0). \)

\[
\mathbf{w}_1 = \mathbf{v}_1 = (1, -1, 1, -1), \\
\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \quad \text{as} \quad \mathbf{v}_2 \perp \mathbf{v}_1.
\]

\[
\mathbf{w}_3 = (\mathbf{z} - \mathbf{x}_0) - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \\
= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \\
= (-1, -1/2, 1/2, 0).
\]

\[
|\mathbf{w}_3| = \left|\left(\frac{-1}{2}, -\frac{1}{2}, \frac{1}{2}, 0\right)\right| = \frac{1}{2} |(-2, -1, 1, 0)| = \frac{\sqrt{6}}{2} = \sqrt{3/2}.
\]
Problem. Approximate the function \(f(x) = e^x \) on the interval \([-1, 1]\) by a quadratic polynomial.

The best approximation would be a polynomial \(p(x) \) that minimizes the distance relative to the uniform norm:

\[
\|f - p\|_\infty = \max_{|x| \leq 1} |f(x) - p(x)|.
\]

However there is no analytic way to find such a polynomial. Instead, one can find a "least squares" approximation that minimizes the integral norm

\[
\|f - p\|_2 = \left(\int_{-1}^{1} |f(x) - p(x)|^2 \, dx \right)^{1/2}.
\]
The norm $\| \cdot \|_2$ is induced by the inner product
\[
\langle g, h \rangle = \int_{-1}^{1} g(x)h(x) \, dx.
\]

Therefore $\| f - p \|_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$ which form a basis for \mathcal{P}_3. This would yield an orthogonal basis p_0, p_1, p_2. Then
\[
p(x) = \frac{\langle f, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) + \frac{\langle f, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x) + \frac{\langle f, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2(x).
\]
Eigenvalues and eigenvectors

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if

$$Av = \lambda v$$

for a nonzero column vector $v \in \mathbb{R}^n$. The vector v is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ.

Remarks.
- Alternative notation: eigenvalue = characteristic value, eigenvector = characteristic vector.
- The zero vector is never considered an eigenvector.
Example. \(A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \).

\[
\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix},
\]

\[
\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ -6 \end{pmatrix} = 3 \begin{pmatrix} 0 \\ -2 \end{pmatrix}.
\]

Hence \((1, 0)\) is an eigenvector of \(A \) belonging to the eigenvalue 2, while \((0, -2)\) is an eigenvector of \(A \) belonging to the eigenvalue 3.
Example. \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).

\[
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.
\]

Hence \((1, 1)\) is an eigenvector of \(A \) belonging to the eigenvalue 1, while \((1, -1)\) is an eigenvector of \(A \) belonging to the eigenvalue \(-1\).

Vectors \(\mathbf{v}_1 = (1, 1) \) and \(\mathbf{v}_2 = (1, -1) \) form a basis for \(\mathbb{R}^2 \). Consider a linear operator \(L : \mathbb{R}^2 \to \mathbb{R}^2 \) given by \(L(\mathbf{x}) = A\mathbf{x} \). The matrix of \(L \) with respect to the basis \(\mathbf{v}_1, \mathbf{v}_2 \) is \(B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \).
Let A be an $n \times n$ matrix. Consider a linear operator $L : \mathbb{R}^n \to \mathbb{R}^n$ given by $L(x) = Ax$.

Let v_1, v_2, \ldots, v_n be a nonstandard basis for \mathbb{R}^n and B be the matrix of the operator L with respect to this basis.

Theorem The matrix B is diagonal if and only if vectors v_1, v_2, \ldots, v_n are eigenvectors of A.

If this is the case, then the diagonal entries of the matrix B are the corresponding eigenvalues of A.

\[A v_i = \lambda_i v_i \iff B = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \vdots \\ O & & \lambda_n \end{pmatrix} \]