MATH 304
Linear Algebra

Lecture 32:
Eigenvalues and eigenvectors of a linear operator.
Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$. The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $\mathcal{N}(A - \lambda I)$, which is nontrivial, is called the **eigenspace** of A corresponding to λ. The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.
Characteristic equation

Definition. Given a square matrix A, the equation
$$\det(A - \lambda I) = 0$$
is called the **characteristic equation** of A.

Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n. It is called the **characteristic polynomial** of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.
Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L : V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(v) = \lambda v$ for a nonzero vector $v \in V$. The vector v is called an **eigenvector** of L associated with the eigenvalue λ. (If V is a functional space then eigenvectors are also called **eigenfunctions**.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(x) = Ax$, where A is an $n \times n$ matrix. In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.
Suppose \(L : V \to V \) is a linear operator on a finite-dimensional vector space \(V \).

Let \(u_1, u_2, \ldots, u_n \) be a basis for \(V \) and \(g : V \to \mathbb{R}^n \) be the corresponding coordinate mapping. Let \(A \) be the matrix of \(L \) with respect to this basis. Then

\[
L(v) = \lambda v \iff A g(v) = \lambda g(v).
\]

Hence the eigenvalues of \(L \) coincide with those of the matrix \(A \). Moreover, the associated eigenvectors of \(A \) are coordinates of the eigenvectors of \(L \).

Definition. The characteristic polynomial \(p(\lambda) = \det(A - \lambda I) \) of the matrix \(A \) is called the **characteristic polynomial** of the operator \(L \).

Then eigenvalues of \(L \) are roots of its characteristic polynomial.
Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis v_1, v_2, \ldots, v_n. Then $A = UBU^{-1}$, where U is the transition matrix from the basis v_1, \ldots, v_n to u_1, \ldots, u_n. We have to show that $\det(A - \lambda I) = \det(B - \lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\det(A - \lambda I) = \det(UBU^{-1} - \lambda I) \\
= \det(UBU^{-1} - U(\lambda I)U^{-1}) = \det(U(B - \lambda I)U^{-1}) \\
= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).
$$
Eigenspaces

Let \(L : V \to V \) be a linear operator. For any \(\lambda \in \mathbb{R} \), let \(V_\lambda \) denotes the set of all solutions of the equation \(L(x) = \lambda x \).

Then \(V_\lambda \) is a *subspace* of \(V \) since \(V_\lambda \) is the *kernel* of a linear operator given by \(x \mapsto L(x) - \lambda x \).

\(V_\lambda \) minus the zero vector is the set of all eigenvectors of \(L \) associated with the eigenvalue \(\lambda \).

In particular, \(\lambda \in \mathbb{R} \) is an eigenvalue of \(L \) if and only if \(V_\lambda \neq \{0\} \).

If \(V_\lambda \neq \{0\} \) then it is called the *eigenspace* of \(L \) corresponding to the eigenvalue \(\lambda \).
Example. \(V = C^\infty(\mathbb{R}), \; D : V \to V, \; Df = f'. \)

A function \(f \in C^\infty(\mathbb{R}) \) is an eigenfunction of the operator \(D \) belonging to an eigenvalue \(\lambda \) if \(f'(x) = \lambda f(x) \) for all \(x \in \mathbb{R} \).

It follows that \(f(x) = ce^{\lambda x} \), where \(c \) is a nonzero constant.

Thus each \(\lambda \in \mathbb{R} \) is an eigenvalue of \(D \).

The corresponding eigenspace is spanned by \(e^{\lambda x} \).
Example. $V = C^\infty(\mathbb{R})$, $L : V \to V$, $Lf = f''$.

$Lf = \lambda f \iff f''(x) - \lambda f(x) = 0$ for all $x \in \mathbb{R}$.

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_λ is two-dimensional.

If $\lambda > 0$ then $V_\lambda = \text{Span}(\exp(\sqrt{\lambda} x), \exp(-\sqrt{\lambda} x))$.

If $\lambda < 0$ then $V_\lambda = \text{Span}(\sin(\sqrt{-\lambda} x), \cos(\sqrt{-\lambda} x))$.

If $\lambda = 0$ then $V_\lambda = \text{Span}(1, x)$.
Let V be a vector space and $L : V \rightarrow V$ be a linear operator.

Proposition 1 If $v \in V$ is an eigenvector of the operator L then the associated eigenvalue is unique.

Proof: Suppose that $L(v) = \lambda_1 v$ and $L(v) = \lambda_2 v$. Then

$$
\lambda_1 v = \lambda_2 v \implies (\lambda_1 - \lambda_2)v = 0 \implies \lambda_1 - \lambda_2 = 0 \implies \lambda_1 = \lambda_2.
$$

Proposition 2 Suppose v_1 and v_2 are eigenvectors of L associated with different eigenvalues λ_1 and λ_2. Then v_1 and v_2 are linearly independent.

Proof: For any scalar $t \neq 0$ the vector tv_1 is also an eigenvector of L associated with the eigenvalue λ_1. Since $\lambda_2 \neq \lambda_1$, it follows that $v_2 \neq tv_1$. That is, v_2 is not a scalar multiple of v_1. Similarly, v_1 is not a scalar multiple of v_2.
Let $L : V \rightarrow V$ be a linear operator.

Proposition 3 If v_1, v_2, and v_3 are eigenvectors of L associated with distinct eigenvalues λ_1, λ_2, and λ_3, then they are linearly independent.

Proof: Suppose that $t_1 v_1 + t_2 v_2 + t_3 v_3 = 0$ for some $t_1, t_2, t_3 \in \mathbb{R}$. Then

$$L(t_1 v_1 + t_2 v_2 + t_3 v_3) = 0,$$

$$t_1 L(v_1) + t_2 L(v_2) + t_3 L(v_3) = 0,$$

$$t_1 \lambda_1 v_1 + t_2 \lambda_2 v_2 + t_3 \lambda_3 v_3 = 0.$$

It follows that

$$t_1 \lambda_1 v_1 + t_2 \lambda_2 v_2 + t_3 \lambda_3 v_3 - \lambda_3(t_1 v_1 + t_2 v_2 + t_3 v_3) = 0$$

$$\implies t_1(\lambda_1 - \lambda_3) v_1 + t_2(\lambda_2 - \lambda_3) v_2 = 0.$$

By the above, v_1 and v_2 are linearly independent. Hence $t_1(\lambda_1 - \lambda_3) = t_2(\lambda_2 - \lambda_3) = 0 \implies t_1 = t_2 = 0$.

Then $t_3 = 0$ as well.
Theorem If v_1, v_2, \ldots, v_k are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$, then v_1, v_2, \ldots, v_k are linearly independent.

Corollary 1 If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \ldots, e^{\lambda_k x}$ are linearly independent.

Proof: Consider a linear operator $D : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ given by $Df = f'.$ Then $e^{\lambda_1 x}, \ldots, e^{\lambda_k x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$. By the theorem, the eigenfunctions are linearly independent.
Corollary 2 If \(v_1, v_2, \ldots, v_k \) are eigenvectors of a matrix \(A \) associated with distinct eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_k \), then \(v_1, v_2, \ldots, v_k \) are linearly independent.

Corollary 3 Let \(A \) be an \(n \times n \) matrix such that the characteristic equation \(\det(A - \lambda I) = 0 \) has \(n \) distinct real roots. Then \(\mathbb{R}^n \) has a basis consisting of eigenvectors of \(A \).

\textit{Proof:} Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be distinct real roots of the characteristic equation. Any \(\lambda_i \) is an eigenvalue of \(A \), hence there is an associated eigenvector \(v_i \). By Corollary 2, vectors \(v_1, v_2, \ldots, v_n \) are linearly independent. Therefore they form a basis for \(\mathbb{R}^n \).