MATH 304
Linear Algebra

Lecture 34:
Review for Test 2.
Topics for Test 2

Coordinates and linear transformations (Leon 3.5, 4.1–4.3)
- Coordinates relative to a basis
- Change of basis, transition matrix
- Linear transformations
- Matrix transformations
- Matrix of a linear transformation

Orthogonality (Leon 5.1–5.6)
- Inner products and norms
- Orthogonal complement, orthogonal projection
- Least squares problems
- The Gram-Schmidt orthogonalization process

Eigenvalues and eigenvectors (Leon 6.1, 6.3)
- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Diagonalization
Sample problems for Test 2

Problem 1 (15 pts.) Let $\mathcal{M}_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L : \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathcal{M}_{2,2}(\mathbb{R})$ given by

$$L \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Find the matrix of the operator L with respect to the basis $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$
Problem 2 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Problem 3 (25 pts.) Let V be a subspace of \mathbb{R}^4 spanned by the vectors $x_1 = (1, 1, 1, 1)$ and $x_2 = (1, 0, 3, 0)$.

(i) Find an orthonormal basis for V.
(ii) Find an orthonormal basis for the orthogonal complement V^\perp.
Problem 4 (30 pts.) Let \(A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \).

(i) Find all eigenvalues of the matrix \(A \).
(ii) For each eigenvalue of \(A \), find an associated eigenvector.
(iii) Is the matrix \(A \) diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix \(A^2 \).

Bonus Problem 5 (15 pts.) Let \(L : V \rightarrow W \) be a linear mapping of a finite-dimensional vector space \(V \) to a vector space \(W \). Show that

\[\dim \text{Range}(L) + \dim \ker(L) = \dim V. \]
Problem 1. Let $M_{2,2}(\mathbb{R})$ denote the vector space of 2×2 matrices with real entries. Consider a linear operator $L : M_{2,2}(\mathbb{R}) \to M_{2,2}(\mathbb{R})$ given by

$$L \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Find the matrix of the operator L with respect to the basis $E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

Let M_L denote the desired matrix.

By definition, M_L is a 4×4 matrix whose columns are coordinates of the matrices $L(E_1), L(E_2), L(E_3), L(E_4)$ with respect to the basis E_1, E_2, E_3, E_4.
\[L(E_1) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = 1E_1 + 2E_2 + 0E_3 + 0E_4, \]

\[L(E_2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix} = 3E_1 + 4E_2 + 0E_3 + 0E_4, \]

\[L(E_3) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 2 \end{pmatrix} = 0E_1 + 0E_2 + 1E_3 + 2E_4, \]

\[L(E_4) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 3 & 4 \end{pmatrix} = 0E_1 + 0E_2 + 3E_3 + 4E_4. \]

It follows that

\[M_L = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \end{pmatrix}. \]
Thus the relation

\[
\begin{pmatrix}
x_1 \\
y_1 \\
z_1 \\
w_1
\end{pmatrix} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}
\]

is equivalent to the relation

\[
\begin{pmatrix}
x_1 \\
y_1 \\
z_1 \\
w_1
\end{pmatrix} = \begin{pmatrix}
1 & 3 & 0 & 0 \\
2 & 4 & 0 & 0 \\
0 & 0 & 1 & 3 \\
0 & 0 & 2 & 4
\end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}.
\]
Problem 2. Find a linear polynomial which is the best least squares fit to the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-3</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

We are looking for a function \(f(x) = c_1 + c_2x \), where \(c_1, c_2 \) are unknown coefficients. The data of the problem give rise to an overdetermined system of linear equations in variables \(c_1 \) and \(c_2 \):

\[
\begin{align*}
 c_1 - 2c_2 &= -3, \\
 c_1 - c_2 &= -2, \\
 c_1 &= 1, \\
 c_1 + c_2 &= 2, \\
 c_1 + 2c_2 &= 5.
\end{align*}
\]

This system is inconsistent.
We can represent the system as a matrix equation $A\mathbf{c} = \mathbf{y}$, where

$$A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix}.$$

The least squares solution \mathbf{c} of the above system is a solution of the normal system $A^T A \mathbf{c} = A^T \mathbf{y}$:

$$
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{pmatrix} \begin{pmatrix}
1 & -2 \\
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} =
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
-2 & -1 & 0 & 1 & 2
\end{pmatrix} \begin{pmatrix} -3 \\ -2 \\ 1 \\ 2 \\ 5 \end{pmatrix} \\
\iff
\begin{pmatrix}
5 & 0 \\
0 & 10
\end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 3 \\ 20 \end{pmatrix} \iff \begin{cases} c_1 = 3/5 \\ c_2 = 2 \end{cases}
$$

Thus the function $f(x) = \frac{3}{5} + 2x$ is the best least squares fit to the above data among linear polynomials.
Problem 3. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $x_1 = (1, 1, 1, 1)$ and $x_2 = (1, 0, 3, 0)$.

(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to vectors x_1, x_2 and obtain an orthogonal basis v_1, v_2 for the subspace V:

$v_1 = x_1 = (1, 1, 1, 1)$,

$v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1)$.

Then we normalize vectors v_1, v_2 to obtain an orthonormal basis w_1, w_2 for V:

$\|v_1\| = 2 \implies w_1 = \frac{v_1}{\|v_1\|} = \frac{1}{2}(1, 1, 1, 1)$

$\|v_2\| = \sqrt{6} \implies w_2 = \frac{v_2}{\|v_2\|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)$
Problem 3. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $x_1 = (1, 1, 1, 1)$ and $x_2 = (1, 0, 3, 0)$.

(ii) Find an orthonormal basis for the orthogonal complement V^\perp.

Since the subspace V is spanned by vectors $(1, 1, 1, 1)$ and $(1, 0, 3, 0)$, it is the row space of the matrix

$$A = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0 \\
1 & 0 & 3 & 0
\end{pmatrix}.$$

Then the orthogonal complement V^\perp is the nullspace of A. To find the nullspace, we convert the matrix A to reduced row echelon form:

$$
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0 \\
1 & 0 & 3 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 3 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & -2 & 1
\end{pmatrix}.$$
Hence a vector \((x_1, x_2, x_3, x_4) \in \mathbb{R}^4\) belongs to \(V^\perp\) if and only if
\[
\begin{pmatrix}
1 & 0 & 3 & 0 \\
0 & 1 & -2 & 1 \\
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\end{pmatrix}
\]

\(\iff\)
\[
\begin{cases}
x_1 + 3x_3 = 0 \\
x_2 - 2x_3 + x_4 = 0
\end{cases}
\iff
\begin{cases}
x_1 = -3x_3 \\
x_2 = 2x_3 - x_4
\end{cases}
\]

The general solution of the system is \((x_1, x_2, x_3, x_4) = (−3t, 2t − s, t, s) = t(−3, 2, 1, 0) + s(0, −1, 0, 1)\), where \(t, s \in \mathbb{R}\).

It follows that \(V^\perp\) is spanned by vectors \(x_3 = (0, −1, 0, 1)\) and \(x_4 = (−3, 2, 1, 0)\).
The vectors $\mathbf{x}_3 = (0, -1, 0, 1)$ and $\mathbf{x}_4 = (-3, 2, 1, 0)$ form a basis for the subspace V^\perp.

It remains to orthogonalize and normalize this basis:

$v_3 = x_3 = (0, -1, 0, 1)$,

$v_4 = x_4 - \frac{x_4 \cdot v_3}{v_3 \cdot v_3} v_3 = (-3, 2, 1, 0) - \frac{-2}{2} (0, -1, 0, 1)$

$= (-3, 1, 1, 1)$,

$\|v_3\| = \sqrt{2} \implies w_3 = \frac{v_3}{\|v_3\|} = \frac{1}{\sqrt{2}} (0, -1, 0, 1)$,

$\|v_4\| = \sqrt{12} = 2\sqrt{3} \implies w_4 = \frac{v_4}{\|v_4\|} = \frac{1}{2\sqrt{3}} (-3, 1, 1, 1)$.

Thus the vectors $w_3 = \frac{1}{\sqrt{2}} (0, -1, 0, 1)$ and $w_4 = \frac{1}{2\sqrt{3}} (-3, 1, 1, 1)$ form an orthonormal basis for V^\perp.
Problem 3. Let V be a subspace of \mathbb{R}^4 spanned by the vectors $x_1 = (1, 1, 1, 1)$ and $x_2 = (1, 0, 3, 0)$.

(i) Find an orthonormal basis for V.
(ii) Find an orthonormal basis for the orthogonal complement V^\perp.

Alternative solution: First we extend the set x_1, x_2 to a basis x_1, x_2, x_3, x_4 for \mathbb{R}^4. Then we orthogonalize and normalize the latter. This yields an orthonormal basis w_1, w_2, w_3, w_4 for \mathbb{R}^4.

By construction, w_1, w_2 is an orthonormal basis for V. It follows that w_3, w_4 is an orthonormal basis for V^\perp.
The set \(\mathbf{x}_1 = (1, 1, 1, 1), \mathbf{x}_2 = (1, 0, 3, 0) \) can be extended to a basis for \(\mathbb{R}^4 \) by adding two vectors from the standard basis.

For example, we can add vectors \(\mathbf{e}_3 = (0, 0, 1, 0) \) and \(\mathbf{e}_4 = (0, 0, 0, 1) \). To show that \(\mathbf{x}_1, \mathbf{x}_2, \mathbf{e}_3, \mathbf{e}_4 \) is indeed a basis for \(\mathbb{R}^4 \), we check that the matrix whose rows are these vectors is nonsingular:

\[
\begin{vmatrix}
1 & 1 & 1 & 1 \\
1 & 0 & 3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{vmatrix}
= -
\begin{vmatrix}
1 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{vmatrix}
= -1 \neq 0.
\]
To orthogonalize the basis \(x_1, x_2, e_3, e_4 \), we apply the Gram-Schmidt process:

\[v_1 = x_1 = (1, 1, 1, 1), \]

\[v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 = (1, 0, 3, 0) - \frac{4}{4}(1, 1, 1, 1) = (0, -1, 2, -1), \]

\[v_3 = e_3 - \frac{e_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{e_3 \cdot v_2}{v_2 \cdot v_2} v_2 = (0, 0, 1, 0) - \frac{1}{4}(1, 1, 1, 1) - \frac{2}{6}(0, -1, 2, -1) = \left(-\frac{1}{4}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12} \right) = \frac{1}{12}(-3, 1, 1, 1), \]

\[v_4 = e_4 - \frac{e_4 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{e_4 \cdot v_2}{v_2 \cdot v_2} v_2 - \frac{e_4 \cdot v_3}{v_3 \cdot v_3} v_3 = (0, 0, 0, 1) - \frac{1}{4}(1, 1, 1, 1) - \frac{1}{6}(0, -1, 2, -1) - \frac{1/12}{1/12} \cdot \frac{1}{12}(-3, 1, 1, 1) = \]

\[= (0, -\frac{1}{2}, 0, \frac{1}{2}) = \frac{1}{2}(0, -1, 0, 1). \]
It remains to normalize vectors \(\mathbf{v}_1 = (1, 1, 1, 1) \), \(\mathbf{v}_2 = (0, -1, 2, -1) \), \(\mathbf{v}_3 = \frac{1}{12}(-3, 1, 1, 1) \), \(\mathbf{v}_4 = \frac{1}{2}(0, -1, 0, 1) \):

\[
\| \mathbf{v}_1 \| = 2 \implies \mathbf{w}_1 = \frac{\mathbf{v}_1}{\| \mathbf{v}_1 \|} = \frac{1}{2}(1, 1, 1, 1)
\]

\[
\| \mathbf{v}_2 \| = \sqrt{6} \implies \mathbf{w}_2 = \frac{\mathbf{v}_2}{\| \mathbf{v}_2 \|} = \frac{1}{\sqrt{6}}(0, -1, 2, -1)
\]

\[
\| \mathbf{v}_3 \| = \frac{1}{\sqrt{12}} = \frac{1}{2\sqrt{3}} \implies \mathbf{w}_3 = \frac{\mathbf{v}_3}{\| \mathbf{v}_3 \|} = \frac{1}{2\sqrt{3}}(-3, 1, 1, 1)
\]

\[
\| \mathbf{v}_4 \| = \frac{1}{\sqrt{2}} \implies \mathbf{w}_4 = \frac{\mathbf{v}_4}{\| \mathbf{v}_4 \|} = \frac{1}{\sqrt{2}}(0, -1, 0, 1)
\]

Thus \(\mathbf{w}_1, \mathbf{w}_2 \) is an orthonormal basis for \(V \) while \(\mathbf{w}_3, \mathbf{w}_4 \) is an orthonormal basis for \(V^\perp \).
Problem 4. Let $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation $\det(A - \lambda I) = 0$. We obtain that

$$
\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 2 & 1 - \lambda \end{vmatrix}
$$

$$
= (1 - \lambda)^3 - 2(1 - \lambda) - 2(1 - \lambda) = (1 - \lambda)((1 - \lambda)^2 - 4)
$$

$$
= (1 - \lambda)((1 - \lambda) - 2)((1 - \lambda) + 2) = -(\lambda - 1)(\lambda + 1)(\lambda - 3).
$$

Hence the matrix A has three eigenvalues: $-1, 1, \text{ and } 3$.

Problem 4. Let \(A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \).

(ii) For each eigenvalue of \(A \), find an associated eigenvector.

An eigenvector \(\mathbf{v} = (x, y, z) \) of the matrix \(A \) associated with an eigenvalue \(\lambda \) is a nonzero solution of the vector equation

\[
(A - \lambda I)\mathbf{v} = \mathbf{0} \iff \begin{pmatrix} 1 - \lambda & 2 & 0 \\ 1 & 1 - \lambda & 1 \\ 0 & 2 & 1 - \lambda \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
\]

To solve the equation, we convert the matrix \(A - \lambda I \) to reduced row echelon form.
First consider the case $\lambda = -1$. The row reduction yields

$$A + I = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Hence

$$(A + I)v = 0 \quad \iff \quad \begin{cases} x - z = 0, \\ y + z = 0. \end{cases}$$

The general solution is $x = t$, $y = -t$, $z = t$, where $t \in \mathbb{R}$. In particular, $v_1 = (1, -1, 1)$ is an eigenvector of A associated with the eigenvalue -1.
Secondly, consider the case $\lambda = 1$. The row reduction yields

\[
A - I = \begin{pmatrix}
0 & 2 & 0 \\
1 & 0 & 1 \\
0 & 2 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 1 \\
0 & 2 & 0 \\
0 & 2 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 2 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

Hence

\[(A - I)v = 0 \iff \begin{cases} x + z = 0, \\ y = 0. \end{cases}\]

The general solution is $x = -t$, $y = 0$, $z = t$, where $t \in \mathbb{R}$. In particular, $v_2 = (-1, 0, 1)$ is an eigenvector of A associated with the eigenvalue 1.
Finally, consider the case \(\lambda = 3 \). The row reduction yields

\[
\begin{align*}
A - 3I &= \begin{pmatrix}
-2 & 2 & 0 \\
1 & -2 & 1 \\
0 & 2 & -2 \\
\end{pmatrix} \\
&\Rightarrow \begin{pmatrix}
1 & -1 & 0 \\
0 & 2 & -2 \\
\end{pmatrix} \\
&\Rightarrow \begin{pmatrix}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 2 & -2 \\
\end{pmatrix} \\
&\Rightarrow \begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
\end{pmatrix}.
\end{align*}
\]

Hence

\[
(A - 3I)v = 0 \iff \begin{cases}
x - z = 0, \\
y - z = 0.
\end{cases}
\]

The general solution is \(x = t, \ y = t, \ z = t \), where \(t \in \mathbb{R} \). In particular, \(v_3 = (1, 1, 1) \) is an eigenvector of \(A \) associated with the eigenvalue 3.
Problem 4. Let \(A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \).

(iii) Is the matrix \(A \) diagonalizable? Explain.

The matrix \(A \) is diagonalizable, i.e., there exists a basis for \(\mathbb{R}^3 \) formed by its eigenvectors.

Namely, the vectors \(\mathbf{v}_1 = (1, -1, 1) \), \(\mathbf{v}_2 = (-1, 0, 1) \), and \(\mathbf{v}_3 = (1, 1, 1) \) are eigenvectors of the matrix \(A \) belonging to distinct eigenvalues. Therefore these vectors are linearly independent. It follows that \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) is a basis for \(\mathbb{R}^3 \).

Alternatively, the existence of a basis for \(\mathbb{R}^3 \) consisting of eigenvectors of \(A \) already follows from the fact that the matrix \(A \) has three distinct eigenvalues.
Problem 4. Let $A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix}$.

(iv) Find all eigenvalues of the matrix A^2.

Suppose that v is an eigenvector of the matrix A associated with an eigenvalue λ, that is, $v \neq 0$ and $Av = \lambda v$. Then

$$A^2v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda(\lambda v) = \lambda^2 v.$$

Therefore v is also an eigenvector of the matrix A^2 and the associated eigenvalue is λ^2. We already know that the matrix A has eigenvalues -1, 1, and 3. It follows that A^2 has eigenvalues 1 and 9.

Since a 3×3 matrix can have up to 3 eigenvalues, we need an additional argument to show that 1 and 9 are the only eigenvalues of A^2. One reason is that the eigenvalue 1 has multiplicity 2.
Bonus Problem 5. Let \(L : V \to W \) be a linear mapping of a finite-dimensional vector space \(V \) to a vector space \(W \). Show that \(\dim \text{Range}(L) + \dim \ker(L) = \dim V \).

The kernel \(\ker(L) \) is a subspace of \(V \). It is finite-dimensional since the vector space \(V \) is.

Take a basis \(v_1, v_2, \ldots, v_k \) for the subspace \(\ker(L) \), then extend it to a basis \(v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_m \) for the entire space \(V \).

Claim Vectors \(L(u_1), L(u_2), \ldots, L(u_m) \) form a basis for the range of \(L \).

Assuming the claim is proved, we obtain
\[
\dim \text{Range}(L) = m, \quad \dim \ker(L) = k, \quad \dim V = k + m.
\]
Claim Vectors $L(u_1), L(u_2), \ldots, L(u_m)$ form a basis for the range of L.

Proof (spanning): Any vector $w \in \text{Range}(L)$ is represented as $w = L(v)$, where $v \in V$. Then

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k + \beta_1 u_1 + \beta_2 u_2 + \cdots + \beta_m u_m$$

for some $\alpha_i, \beta_j \in \mathbb{R}$. It follows that

$$w = L(v) = \alpha_1 L(v_1) + \cdots + \alpha_k L(v_k) + \beta_1 L(u_1) + \cdots + \beta_m L(u_m)$$

$$= \beta_1 L(u_1) + \cdots + \beta_m L(u_m).$$

Note that $L(v_i) = 0$ since $v_i \in \ker(L)$.

Thus $\text{Range}(L)$ is spanned by the vectors $L(u_1), \ldots, L(u_m)$.
Claim Vectors $L(u_1), L(u_2), \ldots, L(u_m)$ form a basis for the range of L.

Proof (linear independence): Suppose that

$$t_1 L(u_1) + t_2 L(u_2) + \cdots + t_m L(u_m) = 0$$

for some $t_i \in \mathbb{R}$. Let $u = t_1 u_1 + t_2 u_2 + \cdots + t_m u_m$. Since

$$L(u) = t_1 L(u_1) + t_2 L(u_2) + \cdots + t_m L(u_m) = 0,$$

the vector u belongs to the kernel of L. Therefore $u = s_1 v_1 + s_2 v_2 + \cdots + s_k v_k$ for some $s_j \in \mathbb{R}$. It follows that

$$t_1 u_1 + t_2 u_2 + \cdots + t_m u_m - s_1 v_1 - s_2 v_2 - \cdots - s_k v_k = u - u = 0.$$

Linear independence of vectors $v_1, \ldots, v_k, u_1, \ldots, u_m$ implies that $t_1 = \cdots = t_m = 0$ (as well as $s_1 = \cdots = s_k = 0$).

Thus the vectors $L(u_1), L(u_2), \ldots, L(u_m)$ are linearly independent.