MATH 304
Linear Algebra

Lecture 40:
Review for the final exam.
Topics for the final exam: Part I

Elementary linear algebra (Leon 1.1–1.5, 2.1–2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.
- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.
Topics for the final exam: Part II

Abstract linear algebra (Leon 3.1–3.6, 4.1–4.3)

- Vector spaces (vectors, matrices, polynomials, functional spaces).
 - Subspaces. Nullspace, column space, and row space of a matrix.
- Span, spanning set. Linear independence.
- Bases and dimension.
- Rank and nullity of a matrix.
- Coordinates relative to a basis.
- Change of basis, transition matrix.
- Linear transformations.
- Matrix transformations.
- Matrix of a linear mapping.
- Similarity of matrices.
Topics for the final exam: Parts III–IV

Advanced linear algebra (Leon 5.1–5.7, 6.1–6.3)

- Euclidean structure in \mathbb{R}^n (length, angle, dot product)
- Inner products and norms
- Orthogonal complement
- Least squares problems
- The Gram-Schmidt orthogonalization process
- Orthogonal polynomials
- Eigenvalues, eigenvectors, eigenspaces
- Characteristic polynomial
- Bases of eigenvectors, diagonalization
- Matrix exponentials
- Complex eigenvalues and eigenvectors
- Orthogonal matrices
- Rigid motions, rotations in space
Bases of eigenvectors

Let A be an $n \times n$ matrix with real entries.

- A has n distinct real eigenvalues \implies a basis for \mathbb{R}^n formed by eigenvectors of A
- A has complex eigenvalues \implies no basis for \mathbb{R}^n formed by eigenvectors of A
- A has n distinct complex eigenvalues \implies a basis for \mathbb{C}^n formed by eigenvectors of A
- A has multiple eigenvalues \implies further information is needed
- an orthonormal basis for \mathbb{R}^n formed by eigenvectors of A \iff A is symmetric: $A^T = A$
Problem. For each of the following 2×2 matrices determine whether it allows

(a) a basis of eigenvectors for \mathbb{R}^2,
(b) a basis of eigenvectors for \mathbb{C}^2,
(c) an orthonormal basis of eigenvectors for \mathbb{R}^2.

\[A = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} \quad (a),(b),(c): \text{yes} \]

\[B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad (a),(b),(c): \text{no} \]
Problem. For each of the following 2×2 matrices determine whether it allows

(a) a basis of eigenvectors for \mathbb{R}^2,
(b) a basis of eigenvectors for \mathbb{C}^2,
(c) an orthonormal basis of eigenvectors for \mathbb{R}^2.

\[
C = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \quad \text{(a),(b): yes} \quad \text{(c): no}
\]

\[
D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{(b): yes} \quad \text{(a),(c): no}
\]
Problem. Let V be the vector space spanned by functions $f_1(x) = x \sin x$, $f_2(x) = x \cos x$, $f_3(x) = \sin x$, and $f_4(x) = \cos x$. Consider the linear operator $D : V \rightarrow V$, $D = d/dx$.

(a) Find the matrix A of the operator D relative to the basis f_1, f_2, f_3, f_4.

(b) Find the eigenvalues of A.

(c) Is the matrix A diagonalizable in \mathbb{R}^4 (in \mathbb{C}^4)?
A is a 4×4 matrix whose columns are coordinates of functions $Df_i = f_i'$ relative to the basis f_1, f_2, f_3, f_4.

$f_1'(x) = (x \sin x)' = x \cos x + \sin x = f_2(x) + f_3(x),

f_2'(x) = (x \cos x)' = -x \sin x + \cos x = -f_1(x) + f_4(x),

f_3'(x) = (\sin x)' = \cos x = f_4(x),

f_4'(x) = (\cos x)' = -\sin x = -f_3(x).

Thus $A = \begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{pmatrix}$.
Eigenvalues of A are roots of its characteristic polynomial

$$\det(A - \lambda I) = \begin{vmatrix}
-\lambda & -1 & 0 & 0 \\
1 & -\lambda & 0 & 0 \\
1 & 0 & -\lambda & -1 \\
0 & 1 & 1 & -\lambda \\
\end{vmatrix}$$

Expand the determinant by the 1st row:

$$\det(A - \lambda I) = -\lambda \begin{vmatrix}
0 & -\lambda & -1 \\
1 & 1 & -\lambda \\
\end{vmatrix} - (-1) \begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & -\lambda \\
\end{vmatrix}$$

$$= \lambda^2(\lambda^2+1)+((\lambda^2+1)) = (\lambda^2+1)^2 = (\lambda-i)^2(\lambda+i)^2.$$

The roots are i and $-i$, both of multiplicity 2.
One can show that both eigenspaces of A are one-dimensional. The eigenspace for i is spanned by $(0, 0, i, 1)$ and the eigenspace for $-i$ is spanned by $(0, 0, -i, 1)$. It follows that the matrix A is not diagonalizable in \mathbb{C}^4.

There is also an indirect way to show that A is not diagonalizable in \mathbb{C}^4. Assume the contrary. Then $A = UPU^{-1}$, where U is an invertible matrix with complex entries and

$$
P = \begin{pmatrix}
 i & 0 & 0 & 0 \\
 0 & i & 0 & 0 \\
 0 & 0 & -i & 0 \\
 0 & 0 & 0 & -i
\end{pmatrix}
$$

(note that P should have the same characteristic polynomial as A). This would imply that $A^2 = UP^2 U^{-1}$. But $P^2 = -I$ so that $A^2 = U(-I)U^{-1} = -I$.

Let us check if $A^2 = -I$.
\[A^2 = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}^2 = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -2 & -1 & 0 \\ 2 & 0 & 0 & -1 \end{pmatrix}. \]

Since \(A^2 \neq -I \), the matrix \(A \) is not diagonalizable in \(\mathbb{C}^4 \).
Problem. Let R denote a linear operator on \mathbb{R}^3 that acts on vectors from the standard basis as follows: $R(e_1) = e_2$, $R(e_2) = e_3$, $R(e_3) = e_1$. Is R a rotation about an axis? Is R a reflection in a plane?

The matrix of R relative to the standard basis is

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

Namely, columns of M are vectors $R(e_1), R(e_2), R(e_3)$. The matrix M is orthogonal since columns form an orthonormal set. Therefore R is a rigid motion.

According to the classification of the 3×3 orthogonal matrices, R is either a rotation about an axis, or a reflection in a plane, or the composition of a rotation about an axis with the reflection in the plane orthogonal to the axis.

We obtain that $\det M = 1$. Hence R is a rotation. One can show that the angle of rotation is 120° and the axis is the line spanned by $(1, 1, 1)$.
Problem. Consider a linear operator \(L : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) defined by \(L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} \), where \(\mathbf{v}_0 = (3/5, 0, -4/5) \).

(a) Find the matrix \(B \) of the operator \(L \).
(b) Find the range and kernel of \(L \).
(c) Find the eigenvalues of \(L \).
(d) Find the matrix of the operator \(L^{2012} \) (\(L \) applied 2012 times).
\(L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v}, \quad \mathbf{v}_0 = (3/5, 0, -4/5). \)

Let \(\mathbf{v} = (x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3. \) Then

\[
L(\mathbf{v}) = \mathbf{v}_0 \times \mathbf{v} = \begin{vmatrix}
\mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\
3/5 & 0 & -4/5 \\
x & y & z
\end{vmatrix}
\]

\[
= \frac{4}{5}y\mathbf{e}_1 - \left(\frac{4}{5}x + \frac{3}{5}z \right)\mathbf{e}_2 + \frac{3}{5}y\mathbf{e}_3.
\]

In particular, \(L(\mathbf{e}_1) = -\frac{4}{5}\mathbf{e}_2, \quad L(\mathbf{e}_2) = \frac{4}{5}\mathbf{e}_1 + \frac{3}{5}\mathbf{e}_3, \quad L(\mathbf{e}_3) = -\frac{3}{5}\mathbf{e}_2. \)

Therefore \(B = \begin{pmatrix}
0 & 4/5 & 0 \\
-4/5 & 0 & -3/5 \\
0 & 3/5 & 0
\end{pmatrix}. \)
The range of the operator L is spanned by columns of the matrix B. It follows that $\text{Range}(L)$ is the plane spanned by $\mathbf{v}_1 = (0, 1, 0)$ and $\mathbf{v}_2 = (4, 0, 3)$.

The kernel of L is the nullspace of the matrix B, i.e., the solution set for the equation $B\mathbf{x} = \mathbf{0}$.

\[
\begin{pmatrix}
0 & 4/5 & 0 \\
-4/5 & 0 & -3/5 \\
0 & 3/5 & 0 \\
\end{pmatrix} \rightarrow \begin{pmatrix}
1 & 0 & 3/4 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\]

$\implies x + \frac{3}{4}z = y = 0 \implies \mathbf{x} = t(-3/4, 0, 1)$.

\[
B = \begin{pmatrix}
0 & 4/5 & 0 \\
-4/5 & 0 & -3/5 \\
0 & 3/5 & 0 \\
\end{pmatrix}.
\]
Alternatively, the kernel of L is the set of vectors $v \in \mathbb{R}^3$ such that $L(v) = v_0 \times v = 0$.

It follows that this is the line spanned by $v_0 = (3/5, 0, -4/5)$.

Characteristic polynomial of the matrix B:

$$
\det(B - \lambda I) = \begin{vmatrix} -\lambda & 4/5 & 0 \\ -4/5 & -\lambda & -3/5 \\ 0 & 3/5 & -\lambda \end{vmatrix}
$$

$$
= -\lambda^3 - (3/5)^2 \lambda - (4/5)^2 \lambda = -\lambda^3 - \lambda = -\lambda(\lambda^2 + 1).
$$

The eigenvalues are 0, i, and $-i$.
The matrix of the operator L^{2012} is B^{2012}.

Since the matrix B has eigenvalues 0, i, and $-i$, it is diagonalizable in \mathbb{C}^3. Namely, $B = U D U^{-1}$, where U is an invertible matrix with complex entries and

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & i & 0 \\ 0 & 0 & -i \end{pmatrix}.$$

Then $B^{2012} = U D^{2012} U^{-1}$. We have that $D^{2012} = \text{diag}(0, i^{2012}, (-i)^{2012}) = \text{diag}(0, 1, 1) = -D^2$.

Hence

$$B^{2012} = U (-D^2) U^{-1} = -B^2 = \begin{pmatrix} 0.64 & 0 & 0.48 \\ 0.48 & 0 & 0.36 \end{pmatrix}. $$