Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Let \(\mathcal{M}_{2,2}(\mathbb{R}) \) denote the vector space of \(2 \times 2 \) matrices with real entries. Consider a linear operator \(L : \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R}) \) given by

\[
L \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.
\]

Find the matrix of the operator \(L \) with respect to the basis

\[
E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Problem 2 (20 pts.) Find a linear polynomial which is the best least squares fit to the following data:

<table>
<thead>
<tr>
<th>(x)</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-3</td>
<td>-2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Problem 3 (25 pts.) Let \(V \) be a subspace of \(\mathbb{R}^4 \) spanned by the vectors \(\mathbf{x}_1 = (1,1,1,1) \) and \(\mathbf{x}_2 = (1,0,3,0) \).

(i) Find an orthonormal basis for \(V \).

(ii) Find an orthonormal basis for the orthogonal complement \(V^\perp \).

Problem 4 (30 pts.) Let \(A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} \).

(i) Find all eigenvalues of the matrix \(A \).

(ii) For each eigenvalue of \(A \), find an associated eigenvector.

(iii) Is the matrix \(A \) diagonalizable? Explain.

(iv) Find all eigenvalues of the matrix \(A^2 \).

Bonus Problem 5 (15 pts.) Let \(L : V \to W \) be a linear mapping of a finite-dimensional vector space \(V \) to a vector space \(W \). Show that

\[
\dim \text{Range}(L) + \dim \ker(L) = \dim V.
\]