MATH 323
Linear Algebra

Lecture 21:
The Gram-Schmidt orthogonalization process.
Orthogonal sets

Let V be an inner product space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|v\| = \sqrt{\langle v, v \rangle}$.

Definition. Nonzero vectors $v_1, v_2, \ldots, v_k \in V$ form an *orthogonal set* if they are orthogonal to each other: $\langle v_i, v_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit norm, $\|v_i\| = 1$, then v_1, v_2, \ldots, v_k is called an *orthonormal set*.

Theorem Any orthogonal set is linearly independent.
Orthogonal projection

Theorem Let V be an inner product space and V_0 be a finite-dimensional subspace of V. Then any vector $x \in V$ is uniquely represented as $x = p + o$, where $p \in V_0$ and $o \perp V_0$.

The component p is called the **orthogonal projection** of the vector x onto the subspace V_0.

The projection p is closer to x than any other vector in V_0. Hence the distance from x to V_0 is $\|x - p\| = \|o\|$.
Let V be an inner product space. Let p be the orthogonal projection of a vector $x \in V$ onto a finite-dimensional subspace V_0.

If V_0 is a one-dimensional subspace spanned by a vector v then $p = \frac{\langle x, v \rangle}{\langle v, v \rangle} v$.

If v_1, v_2, \ldots, v_n is an orthogonal basis for V_0 then

$$p = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots + \frac{\langle x, v_n \rangle}{\langle v_n, v_n \rangle} v_n.$$

Indeed, $\langle p, v_i \rangle = \sum_{j=1}^{n} \frac{\langle x, v_j \rangle}{\langle v_j, v_j \rangle} \langle v_j, v_i \rangle = \frac{\langle x, v_i \rangle}{\langle v_i, v_i \rangle} \langle v_i, v_i \rangle = \langle x, v_i \rangle$

$$\implies \langle x-p, v_i \rangle = 0 \implies x-p \perp v_i \implies x-p \perp V_0.$$
The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product. Suppose x_1, x_2, \ldots, x_n is a basis for V. Let

$$v_1 = x_1,$$

$$v_2 = x_2 - \frac{\langle x_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1,$$

$$v_3 = x_3 - \frac{\langle x_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle x_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2,$$

$$\ldots$$

$$v_n = x_n - \frac{\langle x_n, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \cdots - \frac{\langle x_n, v_{n-1} \rangle}{\langle v_{n-1}, v_{n-1} \rangle} v_{n-1}.$$

Then v_1, v_2, \ldots, v_n is an orthogonal basis for V.
\[
\text{Span}(\mathbf{v}_1, \mathbf{v}_2) = \text{Span}(\mathbf{x}_1, \mathbf{x}_2)
\]
Any basis \(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n \) \(\rightarrow \) Orthogonal basis \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \)

Properties of the Gram-Schmidt process:

- \(\mathbf{v}_k = \mathbf{x}_k - (\alpha_1 \mathbf{x}_1 + \cdots + \alpha_{k-1} \mathbf{x}_{k-1}) \), \(1 \leq k \leq n \);
- the span of \(\mathbf{v}_1, \ldots, \mathbf{v}_{k-1} \) is the same as the span of \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \);
- \(\mathbf{v}_k \) is orthogonal to \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \);
- \(\mathbf{v}_k = \mathbf{x}_k - \mathbf{p}_k \), where \(\mathbf{p}_k \) is the orthogonal projection of the vector \(\mathbf{x}_k \) on the subspace spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \);
- \(\| \mathbf{v}_k \| \) is the distance from \(\mathbf{x}_k \) to the subspace spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_{k-1} \).
Normalization

Let V be a vector space with an inner product. Suppose v_1, v_2, \ldots, v_n is an orthogonal basis for V. Let $w_1 = \frac{v_1}{\|v_1\|}, w_2 = \frac{v_2}{\|v_2\|}, \ldots, w_n = \frac{v_n}{\|v_n\|}$. Then w_1, w_2, \ldots, w_n is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with an inner product may or may not have an orthonormal basis.
An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose \(x_1, x_2, \ldots, x_n \) is a basis for an inner product space \(V \). Let

\[
\begin{align*}
v_1 &= x_1, \\
w_1 &= \frac{v_1}{\|v_1\|}, \\
v_2 &= x_2 - \langle x_2, w_1 \rangle w_1, \\
w_2 &= \frac{v_2}{\|v_2\|}, \\
v_3 &= x_3 - \langle x_3, w_1 \rangle w_1 - \langle x_3, w_2 \rangle w_2, \\
w_3 &= \frac{v_3}{\|v_3\|}, \\
&\quad \vdots \\
v_n &= x_n - \langle x_n, w_1 \rangle w_1 - \cdots - \langle x_n, w_{n-1} \rangle w_{n-1}, \\
w_n &= \frac{v_n}{\|v_n\|}.
\end{align*}
\]

Then \(w_1, w_2, \ldots, w_n \) is an orthonormal basis for \(V \).
Problem. Let V_0 be a subspace of dimension k in \mathbb{R}^n. Let x_1, x_2, \ldots, x_k be a basis for V_0.

(i) Find an orthogonal basis for V_0.

(ii) Extend it to an orthogonal basis for \mathbb{R}^n.

Approach 1. Extend x_1, \ldots, x_k to a basis x_1, x_2, \ldots, x_n for \mathbb{R}^n. Then apply the Gram-Schmidt process to the extended basis. We shall obtain an orthogonal basis v_1, \ldots, v_n for \mathbb{R}^n. By construction, $\text{Span}(v_1, \ldots, v_k) = \text{Span}(x_1, \ldots, x_k) = V_0$. It follows that v_1, \ldots, v_k is a basis for V_0. Clearly, it is orthogonal.

Approach 2. First apply the Gram-Schmidt process to x_1, \ldots, x_k and obtain an orthogonal basis v_1, \ldots, v_k for V_0. Secondly, find a basis y_1, \ldots, y_m for the orthogonal complement V_0^\perp and apply the Gram-Schmidt process to it obtaining an orthogonal basis u_1, \ldots, u_m for V_0^\perp. Then $v_1, \ldots, v_k, u_1, \ldots, u_m$ is an orthogonal basis for \mathbb{R}^n.
Problem. Let Π be the plane in \mathbb{R}^3 spanned by vectors $x_1 = (1, 2, 2)$ and $x_2 = (-1, 0, 2)$.

(i) Find an orthonormal basis for Π.

(ii) Extend it to an orthonormal basis for \mathbb{R}^3.

x_1, x_2 is a basis for the plane Π. We can extend it to a basis for \mathbb{R}^3 by adding one vector from the standard basis. For instance, vectors $x_1, x_2,$ and $x_3 = (0, 0, 1)$ form a basis for \mathbb{R}^3 because

$$\begin{vmatrix} 1 & 2 & 2 \\ -1 & 0 & 2 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} = 2 \neq 0.$$
Using the Gram-Schmidt process, we orthogonalize the basis \(\mathbf{x}_1 = (1, 2, 2), \mathbf{x}_2 = (-1, 0, 2), \mathbf{x}_3 = (0, 0, 1) \):

\[
\mathbf{v}_1 = \mathbf{x}_1 = (1, 2, 2),
\]

\[
\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (-1, 0, 2) - \frac{3}{9} (1, 2, 2)
= (-4/3, -2/3, 4/3),
\]

\[
\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2
= (0, 0, 1) - \frac{2}{9} (1, 2, 2) - \frac{4/3}{4} (-4/3, -2/3, 4/3)
= (2/9, -2/9, 1/9).
\]
Now $v_1 = (1, 2, 2)$, $v_2 = (-4/3, -2/3, 4/3)$, $v_3 = (2/9, -2/9, 1/9)$ is an orthogonal basis for \mathbb{R}^3 while v_1, v_2 is an orthogonal basis for Π. It remains to normalize these vectors.

$$\langle v_1, v_1 \rangle = 9 \implies \|v_1\| = 3$$
$$\langle v_2, v_2 \rangle = 4 \implies \|v_2\| = 2$$
$$\langle v_3, v_3 \rangle = 1/9 \implies \|v_3\| = 1/3$$

$w_1 = v_1/\|v_1\| = (1/3, 2/3, 2/3) = \frac{1}{3}(1, 2, 2)$,

$w_2 = v_2/\|v_2\| = (-2/3, -1/3, 2/3) = \frac{1}{3}(-2, -1, 2)$,

$w_3 = v_3/\|v_3\| = (2/3, -2/3, 1/3) = \frac{1}{3}(2, -2, 1)$.

w_1, w_2 is an orthonormal basis for Π.

w_1, w_2, w_3 is an orthonormal basis for \mathbb{R}^3.
Problem. Find the distance from the point $y = (0, 0, 0, 1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $x_1 = (1, -1, 1, -1)$, $x_2 = (1, 1, 3, -1)$, and $x_3 = (-3, 7, 1, 3)$.

First we apply the Gram-Schmidt process to vectors x_1, x_2, x_3 to obtain an orthogonal basis v_1, v_2, v_3 for the subspace V. Next we compute the orthogonal projection p of the vector y onto V:

$$p = \frac{\langle y, v_1 \rangle}{\langle v_1, v_1 \rangle}v_1 + \frac{\langle y, v_2 \rangle}{\langle v_2, v_2 \rangle}v_2 + \frac{\langle y, v_3 \rangle}{\langle v_3, v_3 \rangle}v_3.$$

Then the distance from y to V equals $\|y - p\|$.

Alternatively, we can apply the Gram-Schmidt process to vectors x_1, x_2, x_3, y. We should obtain an orthogonal system v_1, v_2, v_3, v_4. By construction, $v_4 = y - p$ so that the desired distance will be $\|v_4\|$.
\[
\mathbf{x}_1 = (1, -1, 1, -1), \quad \mathbf{x}_2 = (1, 1, 3, -1), \\
\mathbf{x}_3 = (-3, 7, 1, 3), \quad \mathbf{y} = (0, 0, 0, 1).
\]

\[
\mathbf{v}_1 = \mathbf{x}_1 = (1, -1, 1, -1),
\]

\[
\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (1, 1, 3, -1) - \frac{4}{4} (1, -1, 1, -1)
\]

\[
= (0, 2, 2, 0),
\]

\[
\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2
\]

\[
= (-3, 7, 1, 3) - \frac{-12}{4} (1, -1, 1, -1) - \frac{16}{8} (0, 2, 2, 0)
\]

\[
= (0, 0, 0, 0).
\]
The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector x_3 is a linear combination of x_1 and x_2. V is a plane, not a 3-dimensional subspace. To fix things, it is enough to drop x_3, i.e., we should orthogonalize vectors x_1, x_2, y.

$$\tilde{v}_3 = y - \frac{\langle y, v_1 \rangle}{\langle v_1, v_1 \rangle}v_1 - \frac{\langle y, v_2 \rangle}{\langle v_2, v_2 \rangle}v_2$$

$$= (0, 0, 0, 1) - \frac{-1}{4}(1, -1, 1, -1) - \frac{0}{8}(0, 2, 2, 0)$$

$$= (1/4, -1/4, 1/4, 3/4).$$

$$|\tilde{v}_3| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}. $$
Problem. Find the distance from the point \(z = (0, 0, 1, 0) \) to the plane \(\Pi \) that passes through the point \(x_0 = (1, 0, 0, 0) \) and is parallel to the vectors \(v_1 = (1, -1, 1, -1) \) and \(v_2 = (0, 2, 2, 0) \).

The plane \(\Pi \) is not a subspace of \(\mathbb{R}^4 \) as it does not pass through the origin. Let \(\Pi_0 = \text{Span}(v_1, v_2) \). Then \(\Pi = \Pi_0 + x_0 \).

Hence the distance from the point \(z \) to the plane \(\Pi \) is the same as the distance from the point \(z - x_0 \) to the plane \(\Pi - x_0 = \Pi_0 \).

We shall apply the Gram-Schmidt process to vectors \(v_1, v_2, z - x_0 \). This will yield an orthogonal system \(w_1, w_2, w_3 \). The desired distance will be \(\|w_3\| \).
\(\mathbf{v}_1 = (1, -1, 1, -1), \quad \mathbf{v}_2 = (0, 2, 2, 0), \quad \mathbf{z} - \mathbf{x}_0 = (-1, 0, 1, 0). \)

\[\mathbf{w}_1 = \mathbf{v}_1 = (1, -1, 1, -1), \]
\[\mathbf{w}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{v}_2, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 = \mathbf{v}_2 = (0, 2, 2, 0) \text{ as } \mathbf{v}_2 \perp \mathbf{v}_1. \]

\[\mathbf{w}_3 = (\mathbf{z} - \mathbf{x}_0) - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_1 \rangle}{\langle \mathbf{w}_1, \mathbf{w}_1 \rangle} \mathbf{w}_1 - \frac{\langle \mathbf{z} - \mathbf{x}_0, \mathbf{w}_2 \rangle}{\langle \mathbf{w}_2, \mathbf{w}_2 \rangle} \mathbf{w}_2 \]
\[= (-1, 0, 1, 0) - \frac{0}{4} (1, -1, 1, -1) - \frac{2}{8} (0, 2, 2, 0) \]
\[= (-1, -1/2, 1/2, 0). \]

\[|\mathbf{w}_3| = \left| \left(-1, -\frac{1}{2}, \frac{1}{2}, 0 \right) \right| = \frac{1}{2} |(-2, -1, 1, 0)| = \frac{\sqrt{6}}{2} = \sqrt{\frac{3}{2}}. \]
Problem. Approximate the function $f(x) = e^x$ on the interval $[-1, 1]$ by a quadratic polynomial.

The best approximation would be a polynomial $p(x)$ that minimizes the distance relative to the uniform norm:

$$\|f - p\|_\infty = \max_{|x| \leq 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a “least squares” approximation that minimizes the integral norm

$$\|f - p\|_2 = \left(\int_{-1}^{1} |f(x) - p(x)|^2 \, dx \right)^{1/2}.$$
The norm $\| \cdot \|_2$ is induced by the inner product
\[
\langle g, h \rangle = \int_{-1}^{1} g(x) h(x) \, dx.
\]

Therefore $\| f - p \|_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of polynomials of degree at most 2.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3. This would yield an orthogonal basis p_0, p_1, p_2. Then
\[
p(x) = \frac{\langle f, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) + \frac{\langle f, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x) + \frac{\langle f, p_2 \rangle}{\langle p_2, p_2 \rangle} p_2(x).
\]