Sample problems for the final exam: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Find a quadratic polynomial \(p(x) \) such that \(p(-1) = p(3) = 6 \) and \(p'(2) = p(1) \).

Let \(p(x) = a + bx + cx^2 \). Then \(p(-1) = a - b + c \), \(p(1) = a + b + c \), and \(p(3) = a + 3b + 9c \). Also, \(p'(x) = b + 2cx \) so that \(p'(2) = b + 4c \). The coefficients \(a, b, \) and \(c \) are to be chosen so that

\[
\begin{align*}
 &\begin{cases}
 a - b + c = 6, \\
 a + 3b + 9c = 6, \\
 b + 4c = a + b + c
 \end{cases} \\
 \iff &\begin{cases}
 a - b + c = 6, \\
 a + 3b + 9c = 6, \\
 a - 3c = 0.
 \end{cases}
\end{align*}
\]

This is a system of linear equations. To solve it, we convert the augmented matrix to reduced row echelon form using elementary row operations:

\[
\begin{pmatrix}
 1 & -1 & 1 & 6 \\
 1 & 3 & 9 & 6 \\
 1 & 0 & -3 & 0
\end{pmatrix} \rightarrow \begin{pmatrix}
 1 & 0 & -3 & 0 \\
 0 & -1 & 4 & 6 \\
 0 & 3 & 12 & 6
\end{pmatrix} \rightarrow \begin{pmatrix}
 1 & 0 & -3 & 0 \\
 0 & 1 & 4 & 6 \\
 0 & 0 & 24 & 24
\end{pmatrix} \rightarrow \begin{pmatrix}
 1 & 0 & -3 & 0 \\
 0 & 1 & 4 & 6 \\
 0 & 0 & 1 & 1
\end{pmatrix}
\]

We obtain that the system has a unique solution: \(a = 3, b = -2, \) and \(c = 1 \). Thus \(p(x) = x^2 - 2x + 3 \).

Problem 2 (20 pts.) Consider a linear transformation \(L : \mathbb{R}^5 \to \mathbb{R}^2 \) given by

\[
L(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_3 + x_5, 2x_1 - x_2 + x_4).
\]

Find a basis for the null-space of \(L \), then extend it to a basis for \(\mathbb{R}^5 \).

The null-space \(\mathcal{N}(L) \) consists of all vectors \(\mathbf{x} \in \mathbb{R}^5 \) such that \(L(\mathbf{x}) = \mathbf{0} \). This is the solution set of the following systems of linear equations:

\[
\begin{align*}
 &\begin{cases}
 x_1 + x_3 + x_5 = 0 \\
 2x_1 - x_2 + x_4 = 0
 \end{cases} \iff
 &\begin{cases}
 x_1 + x_3 + x_5 = 0 \\
 -x_2 - 2x_3 + x_4 - 2x_5 = 0
 \end{cases} \\
 \iff &\begin{cases}
 x_1 + x_3 + x_5 = 0 \\
 x_2 + 2x_3 - x_4 + 2x_5 = 0
 \end{cases} \iff
 &\begin{cases}
 x_1 = -x_3 - x_5 \\
 x_2 = -2x_3 + x_4 - 2x_5
 \end{cases}
\end{align*}
\]

The general solution of the system is

\[
\mathbf{x} = (-t_1 - t_3, -2t_1 + t_2 - 2t_3, t_1, t_2, t_3) = t_1(-1, -2, 1, 0, 0) + t_2(0, 1, 0, 1, 0) + t_3(-1, -2, 0, 0, 1),
\]

where \(t_1, t_2, t_3 \) are any scalars. This is the solution set of the system of linear equations determined by \(L \).
where \(t_1, t_2, t_3 \) are arbitrary real numbers. We obtain that the null-space \(\mathcal{N}(L) \) is spanned by vectors \(v_1 = (-1, -2, 1, 0, 0), \ v_2 = (0, 1, 0, 1, 0), \) and \(v_3 = (-1, -2, 0, 0, 1). \) The last three coordinates of these vectors form the standard basis for \(\mathbb{R}^3. \) It follows that the vectors \(v_1, v_2, v_3 \) are linearly independent. Hence they form a basis for \(\mathcal{N}(L). \)

To extend the basis for \(\mathcal{N}(L) \) to a basis for \(\mathbb{R}^5, \) we need two more vectors. We can use two vectors from the standard basis. For example, the vectors \(v_1, v_2, v_3, e_1, e_2 \) form a basis for \(\mathbb{R}^5. \) To verify this, we show that a \(5 \times 5 \) matrix with these vectors as columns has a nonzero determinant:

\[
\begin{vmatrix}
-1 & 0 & -1 & 1 & 0 \\
-2 & 1 & -2 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{vmatrix}
= 1.
\]

Problem 3 (20 pts.) Let \(v_1 = (1, 1, 1), v_2 = (1, 1, 0), \) and \(v_3 = (1, 0, 1). \) Let \(T: \mathbb{R}^3 \to \mathbb{R}^3 \) be a linear operator on \(\mathbb{R}^3 \) such that \(T(v_1) = v_2, T(v_2) = v_3, T(v_3) = v_1. \) Find the matrix of the operator \(T \) relative to the standard basis.

Let \(U \) be a \(3 \times 3 \) matrix such that its columns are vectors \(v_1, v_2, v_3: \)

\[
U = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}.
\]

To determine whether \(v_1, v_2, v_3 \) is a basis for \(\mathbb{R}^3, \) we find the determinant of \(U: \)

\[
\det U = \begin{vmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{vmatrix}
= 1
\]

Since \(\det U \neq 0, \) the vectors \(v_1, v_2, v_3 \) are linearly independent. Therefore they form a basis for \(\mathbb{R}^3. \) It follows that the operator \(T \) is defined well and uniquely.

The matrix of the operator \(T \) relative to the basis \(v_1, v_2, v_3 \) is

\[
B = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}.
\]

Since the matrix \(U \) is the transition matrix from \(v_1, v_2, v_3 \) to the standard basis, the matrix of \(T \) relative to the standard basis is \(A = UBU^{-1}. \)

To find the inverse \(U^{-1}, \) we merge the matrix \(U \) with the identity matrix \(I \) into one \(3 \times 6 \) matrix and apply row reduction to convert the left half \(U \) of this matrix into \(I. \) Simultaneously, the right half \(I \) will be converted into \(U^{-1}: \)

\[
(U|I) = \begin{vmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{vmatrix}
\]

\[
= \begin{vmatrix}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{vmatrix}
\]

\[
= \begin{vmatrix}
1 & 0 & 0 & 1 & 1 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 1 & 0
\end{vmatrix}
\]
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{pmatrix} = (I|U^{-1}).
\]

Thus

\[
A = UBU^{-1} = \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{pmatrix}
= \begin{pmatrix}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{pmatrix} \begin{pmatrix}
-1 & 1 & 1 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
2 & -1 & -1
\end{pmatrix}.
\]

Problem 4 (20 pts.) Let \(R : \mathbb{R}^3 \to \mathbb{R}^3 \) be the operator of orthogonal reflection in the plane \(\Pi \) spanned by vectors \(u_1 = (1, 0, -1) \) and \(u_2 = (1, -1, 3) \). Find the image of the vector \(u = (2, 3, 4) \) under this operator.

By definition of the orthogonal reflection, \(R(x) = x \) for any vector \(x \in \Pi \) and \(R(y) = -y \) for any vector \(y \) orthogonal to the plane \(\Pi \). The vector \(u \) is uniquely decomposed as \(u = p + o \), where \(p \in \Pi \) and \(o \in \Pi^\perp \). Then \(R(u) = R(p + o) = R(p) + R(o) = p - o \).

The component \(p \) is the orthogonal projection of the vector \(u \) onto the plane \(\Pi \). We can compute it using the formula

\[
p = \frac{\langle u, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle u, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2,
\]

in which \(v_1, v_2 \) is an arbitrary orthogonal basis for \(\Pi \). To get such a basis, we apply the Gram-Schmidt process to the basis \(u_1, u_2 \):

\[
\begin{align*}
v_1 &= u_1 = (1, 0, -1), \\
v_2 &= u_2 - \frac{\langle u_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = (1, -1, 3) - \frac{-2}{2} (1, 0, -1) = (2, -1, 2).
\end{align*}
\]

Now \(p = -\frac{2}{2} (1, 0, -1) + \frac{9}{9} (2, -1, 2) = (1, -1, 3) \).

Then \(o = u - p = (1, 4, 1) \). Finally, \(R(u) = p - o = (0, -5, 2) \).

Problem 5 (25 pts.) Consider the vector space \(W \) of all polynomials of degree at most 3 in variables \(x \) and \(y \) with real coefficients. Let \(D \) be a linear operator on \(W \) given by \(D(p) = \frac{\partial p}{\partial x} \) for any \(p \in W \). Find the Jordan canonical form of the operator \(D \).

The vector space \(W \) is 10-dimensional. It has a basis of monomials: \(1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3 \).

Note that \(D(x^m y^k) = mx^{m-1} y^k \) if \(m > 0 \) and \(D(x^m y^k) = 0 \) otherwise. It follows that the operator \(D^4 \) maps each monomial to zero, which implies that this operator is identically zero. As a consequence, \(0 \) is the only eigenvalue of the operator \(D \).

To determine the Jordan canonical form of \(D \), we need to determine the null-spaces of its iterations. Indeed, \(\dim \mathcal{N}(D) \) is the total number of Jordan blocks in the Jordan canonical form of \(D \). Next, \(\dim \mathcal{N}(D^2) - \dim \mathcal{N}(D) \) is the number of Jordan blocks of dimensions at least 2 \(\times \) 2. Further, \(\dim \mathcal{N}(D^3) - \dim \mathcal{N}(D^2) \) is the number of Jordan blocks of dimensions at least 3 \(\times \) 3, and so on...
The null-space $\mathcal{N}(D)$ is 4-dimensional, it is spanned by $1, y, y^2, y^3$. The null-space $\mathcal{N}(D^2)$ is 7-dimensional, it is spanned by $1, y, y^2, y^3, x, xy, xy^2$. The null-space $\mathcal{N}(D^3)$ is 9-dimensional, it is spanned by $1, y, y^2, y^3, x, xy, xy^2, x^2, x^2y$. The null-space $\mathcal{N}(D^4)$ is the entire 10-dimensional space W. It follows that the Jordan canonical form of D contains one Jordan block of dimensions $1 \times 1, 2 \times 2, 3 \times 3, 4 \times 4$:

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

Bonus Problem 6 (15 pts.) An upper triangular matrix is called unipotent if all diagonal entries are equal to 1. Prove that the inverse of a unipotent matrix is also unipotent.

Let \mathcal{U} denote the class of elementary row operations that add a scalar multiple of row $#i$ to row $#j$, where i and j satisfy $j < i$. It is easy to see that such an operation transforms a unipotent matrix into another unipotent matrix.

It remains to observe that any unipotent matrix A (which is in row echelon form) can be converted into the identity matrix I (which is its reduced row echelon form) by applying only operations from the class \mathcal{U}. Now the same sequence of elementary row operations converts I into the inverse matrix A^{-1}. Since the identity matrix is unipotent, so is A^{-1}.