MATH 423
Linear Algebra II

Lecture 11:
Change of coordinates (continued).
Isomorphism of vector spaces.
Change of coordinates

Let V be a vector space of dimension n.
Let v_1, v_2, \ldots, v_n be a basis for V and $g_1 : V \to \mathbb{F}^n$ be the coordinate mapping corresponding to this basis.
Let u_1, u_2, \ldots, u_n be another basis for V and $g_2 : V \to \mathbb{F}^n$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ g_1^{-1}$ is a linear operator on \mathbb{F}^n. It has the form $x \mapsto Ux$, where U is an $n \times n$ matrix.

U is called the **transition matrix** from v_1, v_2, \ldots, v_n to u_1, u_2, \ldots, u_n. Columns of U are coordinates of the vectors v_1, v_2, \ldots, v_n with respect to the basis u_1, u_2, \ldots, u_n.
Change of coordinates for a linear operator

Let \(L : V \to V \) be a linear operator on a vector space \(V \).

Let \(A \) be the matrix of \(L \) relative to a basis \(a_1, a_2, \ldots, a_n \) for \(V \). Let \(B \) be the matrix of \(L \) relative to another basis \(b_1, b_2, \ldots, b_n \) for \(V \).

Let \(U \) be the transition matrix from the basis \(a_1, a_2, \ldots, a_n \) to \(b_1, b_2, \ldots, b_n \).

\[
\begin{array}{ccc}
\text{a-coordinates of } v & \xrightarrow{A} & \text{a-coordinates of } L(v) \\
U & \downarrow & U \\
\text{b-coordinates of } v & \xrightarrow{B} & \text{b-coordinates of } L(v)
\end{array}
\]

It follows that \(UAx = BUx \) for all \(x \in \mathbb{F}^n \) \(\implies \) \(UA = BU \).

Then \(A = U^{-1}BU \) and \(B = UAU^{-1} \).
Problem. Consider a linear operator \(L : \mathbb{F}^2 \rightarrow \mathbb{F}^2 \),

\[
L \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.
\]

Find the matrix of \(L \) with respect to the basis
\(\mathbf{v}_1 = (3, 1), \mathbf{v}_2 = (2, 1) \).

Let \(S \) be the matrix of \(L \) with respect to the standard basis, \(N \) be the matrix of \(L \) with respect to the basis \(\mathbf{v}_1, \mathbf{v}_2 \), and \(U \) be the transition matrix from \(\mathbf{v}_1, \mathbf{v}_2 \) to \(\mathbf{e}_1, \mathbf{e}_2 \). Then \(N = U^{-1}SU \).

\[
S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix},
\]

\[
N = U^{-1}SU = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}
\]

\[
= \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}.
\]
Similarity

Definition. An $n \times n$ matrix B is said to be **similar** to an $n \times n$ matrix A if $B = S^{-1}AS$ for some nonsingular $n \times n$ matrix S.

Remark. Two $n \times n$ matrices are similar if and only if they represent the same linear operator on \mathbb{F}^n with respect to different bases.

Theorem Similarity is an *equivalence relation*, which means that

(i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then A is similar to C.
Theorem Let V, W be finite-dimensional vector spaces and $f : V \to W$ be a linear map. Then one can choose bases for V and W so that the respective matrix of f is has the block form

$$
\begin{pmatrix}
I_r & 0 \\
0 & O
\end{pmatrix},
$$

where r is the rank of f.

Example. With a suitable choice of bases, any linear map $f : \mathbb{F}^3 \to \mathbb{F}^2$ has one of the following matrices:

$$
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}.
$$
Proof of the theorem:
Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ be a basis for the null-space $\mathcal{N}(f)$.
Extend it to a basis $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u}_1, \ldots, \mathbf{u}_r$ for V.
Then $f(\mathbf{u}_1), f(\mathbf{u}_2), \ldots, f(\mathbf{u}_r)$ is a basis for the range $\mathcal{R}(f)$.
Extend it to a basis $f(\mathbf{u}_1), \ldots, f(\mathbf{u}_r), \mathbf{w}_1, \ldots, \mathbf{w}_l$ for W.

Now the matrix of f with respect to bases $[\mathbf{u}_1, \ldots, \mathbf{u}_r, \mathbf{v}_1, \ldots, \mathbf{v}_k]$ and $[f(\mathbf{u}_1), \ldots, f(\mathbf{u}_r), \mathbf{w}_1, \ldots, \mathbf{w}_l]$ is
\[
\begin{pmatrix}
I_r & \mathbf{O} \\
\mathbf{O} & \mathbf{O}
\end{pmatrix}.
\]
Definition. A map \(f : V_1 \to V_2 \) is one-to-one if it maps different elements from \(V_1 \) to different elements in \(V_2 \). The map \(f \) is onto if any element \(y \in V_2 \) is represented as \(f(x) \) for some \(x \in V_1 \).

If the map \(f \) is both one-to-one and onto, then the inverse map \(f^{-1} : V_2 \to V_1 \) is well defined.

Now let \(V_1, V_2 \) be vector spaces and \(L : V_1 \to V_2 \) be a linear map.

Theorem (i) The linear map \(L \) is one-to-one if and only if \(\mathcal{N}(L) = \{0\} \).

(ii) The linear map \(L \) is onto if \(\mathcal{R}(L) = V_2 \).

(iii) If the linear map \(L \) is both one-to-one and onto, then the inverse map \(L^{-1} \) is also linear.
Definition. A linear map $L : V_1 \rightarrow V_2$ is called an isomorphism of vector spaces if it is both one-to-one and onto.

The vector space V_1 is said to be isomorphic to V_2 if there exists an isomorphism $L : V_1 \rightarrow V_2$.

The word “isomorphism” applies when two complex structures can be mapped onto each other, in such a way that to each part of one structure there is a corresponding part in the other structure, where “corresponding” means that the two parts play similar roles in their respective structures.
Alternative notation

General maps

one-to-one .. injective
onto .. surjective
one-to-one and onto ... bijective

Linear maps

any map .. homomorphism
one-to-one .. monomorphism
onto .. epimorphism
one-to-one and onto ... isomorphism

Linear self-maps

any map .. endomorphism
one-to-one and onto ... automorphism
Examples of isomorphism

- $\mathcal{M}_{1,3}(\mathbb{F})$ is isomorphic to $\mathcal{M}_{3,1}(\mathbb{F})$.
 Isomorphism: $(x_1, x_2, x_3) \mapsto \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$.

- $\mathcal{M}_{2,2}(\mathbb{F})$ is isomorphic to \mathbb{F}^4.
 Isomorphism: $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (a, b, c, d)$.

- $\mathcal{M}_{2,3}(\mathbb{F})$ is isomorphic to $\mathcal{M}_{3,2}(\mathbb{F})$.
 Isomorphism: $A \mapsto A^t$.

- The plane $z = 0$ in \mathbb{R}^3 is isomorphic to \mathbb{R}^2.
 Isomorphism: $(x, y, 0) \mapsto (x, y)$.
Examples of isomorphism

- \mathcal{P}_n is isomorphic to \mathbb{R}^{n+1}.
 Isomorphism: $a_0 + a_1 x + \cdots + a_n x^n \mapsto (a_0, a_1, \ldots, a_n)$.

- \mathcal{P} is isomorphic to \mathbb{R}_0^∞.
 Isomorphism:

 $a_0 + a_1 x + \cdots + a_n x^n \mapsto (a_0, a_1, \ldots, a_n, 0, 0, \ldots)$.

- $\mathcal{M}_{m,n}(\mathbb{F})$ is isomorphic to $\mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$.
 Isomorphism: $A \mapsto L_A$, where $L_A(x) = Ax$.

- Any vector space V of dimension n is isomorphic to \mathbb{F}^n.
 Isomorphism: $v \mapsto [v]_\alpha$, where α is a basis for V.
Isomorphism and dimension

Definition. Two sets S_1 and S_2 are said to be of the same **cardinality** if there exists a bijective map $f : S_1 \to S_2$.

Theorem 1 All bases of a fixed vector space V are of the same cardinality.

Theorem 2 Two vector spaces are isomorphic if and only if their bases are of the same cardinality. In particular, a vector space V is isomorphic to \mathbb{F}^n if and only if $\dim V = n$.

Remark. For a finite set, the cardinality is a synonym for the number of its elements. For an infinite set, the cardinality is a more sophisticated notion. For example, \mathbb{R}^∞ and \mathcal{P} are both infinite-dimensional vector spaces but they are not isomorphic.