Lecture 14:
General linear equations.
Elementary matrices.
General linear equations

Definition. A **linear equation** is an equation of the form

\[L(x) = b, \]

where \(L : V \rightarrow W \) is a linear mapping, \(b \) is a given vector from \(W \), and \(x \) is an unknown vector from \(V \).

The range of \(L \) is the set of all vectors \(b \in W \) such that the equation \(L(x) = b \) has a solution.

The null-space of \(L \) is the solution set of the **homogeneous** linear equation \(L(x) = 0 \).

Theorem If the linear equation \(L(x) = b \) is solvable and \(\dim \mathcal{N}(L) < \infty \), then the general solution is

\[x_0 + t_1 v_1 + \cdots + t_k v_k, \]

where \(x_0 \) is a particular solution, \(v_1, \ldots, v_k \) is a basis for the null-space \(\mathcal{N}(L) \), and \(t_1, \ldots, t_k \) are arbitrary scalars.
Example. \[\begin{cases} x + y + z = 4, \\ x + 2y = 3. \end{cases} \]

\[L : \mathbb{R}^3 \to \mathbb{R}^2, \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \]

Linear equation: \[L(x) = b, \] where \[b = \begin{pmatrix} 4 \\ 3 \end{pmatrix}. \]

\[\begin{cases} x + y + z = 4 \\ x + 2y = 3 \end{cases} \iff \begin{cases} x + y + z = 4 \\ y - z = -1 \end{cases} \iff \begin{cases} x + 2z = 5 \\ y - z = -1 \end{cases} \iff \begin{cases} x = 5 - 2z \\ y = -1 + z \end{cases} \]

\[(x, y, z) = (5 - 2t, -1 + t, t) = (5, -1, 0) + t(-2, 1, 1). \]
Example. \(u'''(x) - 2u''(x) + u'(x) = e^{2x} \).

Linear operator \(L : C^3(\mathbb{R}) \to C(\mathbb{R}), \ Lu = u''' - 2u'' + u' \).

Linear equation: \(Lu = b \), where \(b(x) = e^{2x} \).

According to the theory of differential equations, the initial value problem

\[
\begin{align*}
 u'''(x) - 2u''(x) + u'(x) &= g(x), \quad x \in \mathbb{R}, \\
 u(a) &= b_0, \\
 u'(a) &= b_1, \\
 u''(a) &= b_2
\end{align*}
\]

has a unique solution for any \(g \in C(\mathbb{R}) \) and any \(b_0, b_1, b_2 \in \mathbb{R} \). It follows that \(L(C^3(\mathbb{R})) = C(\mathbb{R}) \).

Also, the initial data evaluation \(I(u) = (u(a), u'(a), u''(a)) \), which is a linear mapping \(I : C^3(\mathbb{R}) \to \mathbb{R}^3 \), is one-to-one and onto when restricted to \(\mathcal{N}(L) \). Hence \(\dim \mathcal{N}(L) = 3 \).

It is easy to check that \(L(xe^x) = L(e^x) = L(1) = 0 \). One can also show that \(xe^x, e^x, \) and \(1 \) are linearly independent.
Example. \(u'''(x) - 2u''(x) + u'(x) = e^{2x} \).

Linear operator \(L : C^3(\mathbb{R}) \to C(\mathbb{R}), \)
\(Lu = u''' - 2u'' + u'. \)

Linear equation: \(Lu = b, \) where \(b(x) = e^{2x}. \)

It follows from the previous slide that functions \(xe^x, e^x \) and 1 form a basis for the null-space of \(L. \) It remains to find a particular solution.

\(L(e^{2x}) = 8e^{2x} - 2(4e^{2x}) + 2e^{2x} = 2e^{2x}. \)

Since \(L \) is a linear operator, \(L\left(\frac{1}{2}e^{2x}\right) = e^{2x}. \)

Particular solution: \(u_0(x) = \frac{1}{2}e^{2x}. \)

Thus the general solution is
\[u(x) = \frac{1}{2}e^{2x} + t_1xe^x + t_2e^x + t_3. \]
Elementary row operations for matrices:
(1) to interchange two rows;
(2) to multiply a row by a nonzero scalar;
(3) to add the ith row multiplied by some scalar r to the jth row.

Remark. Rows are added and multiplied by scalars as vectors (namely, row vectors).

Similarly, we define three types of elementary column operations.
Elementary row operations

\[
\begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
= \begin{pmatrix}
v_1 \\
v_2 \\
\vdots \\
v_m
\end{pmatrix},
\]

where \(v_i = (a_{i1} a_{i2} \ldots a_{in}) \) is a row vector.
Elementary row operations

Operation 1: to interchange the ith row with the jth row:

$$\begin{pmatrix} v_1 \\ \vdots \\ v_i \\ \vdots \\ v_j \\ \vdots \\ v_m \end{pmatrix} \rightarrow \begin{pmatrix} v_1 \\ \vdots \\ v_j \\ \vdots \\ v_i \\ \vdots \\ v_m \end{pmatrix}$$
Elementary row operations

Operation 2: to multiply the ith row by $r \neq 0$:

\[
\begin{pmatrix}
 \mathbf{v}_1 \\
 \vdots \\
 \mathbf{v}_i \\
 \vdots \\
 \mathbf{v}_m
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 \mathbf{v}_1 \\
 \vdots \\
 r\mathbf{v}_i \\
 \vdots \\
 \mathbf{v}_m
\end{pmatrix}
\]
Elementary row operations

Operation 3: to add the ith row multiplied by r to the jth row:

\[
\begin{pmatrix}
 v_1 \\
 \vdots \\
 v_i \\
 \vdots \\
 v_j \\
 \vdots \\
 v_m
\end{pmatrix} \rightarrow \begin{pmatrix}
 v_1 \\
 \vdots \\
 v_i \\
 \vdots \\
 v_j + r v_i \\
 \vdots \\
 v_m
\end{pmatrix}
\]
Theorem Any elementary row operation can be simulated as left multiplication by a certain matrix.

Examples.

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{pmatrix}
=
\begin{pmatrix}
a_1 & a_2 & a_3 \\
2b_1 & 2b_2 & 2b_3 \\
c_1 & c_2 & c_3
\end{pmatrix},
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{pmatrix}
=
\begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1+3a_1 & b_2+3a_2 & b_3+3a_3 \\
c_1 & c_2 & c_3
\end{pmatrix},
\]

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3
\end{pmatrix}
=
\begin{pmatrix}
a_1 & a_2 & a_3 \\
c_1 & c_2 & c_3 \\
b_1 & b_2 & b_3
\end{pmatrix}.
\]
Elementary matrices

To obtain the matrix EA from A, interchange the ith row with the jth row. To obtain AE from A, interchange the ith column with the jth column.
Elementary matrices

\[E = \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} \text{ row } \#i \]

To obtain the matrix \(EA \) from \(A \), multiply the \(i \)th row by \(r \). To obtain the matrix \(AE \) from \(A \), multiply the \(i \)th column by \(r \).
Elementary matrices

\[E = \begin{pmatrix}
1 & \cdots & O \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 \\
0 & \cdots & r & \cdots & 1 \\
\vdots & \ddots & \vdots & \ddots & \ddots \\
0 & \cdots & 0 & \cdots & 0 & \cdots & 1
\end{pmatrix} \]

row \#i

row \#j

To obtain the matrix \(EA \) from \(A \), add \(r \) times the \(i \)th row to the \(j \)th row. To obtain the matrix \(AE \) from \(A \), add \(r \) times the \(j \)th column to the \(i \)th column.
Notice that the elementary matrix E_σ simulating an elementary row operation σ is obtained by applying σ to the identity matrix. In particular, this implies that E_σ is unique.

Theorem Any elementary row operation σ_1 can be undone by applying another elementary row operation σ_2. Moreover, the operation σ_1 will undo the operation σ_2.

Corollary Elementary matrices are invertible.

Proof: Let E be an elementary matrix simulating an elementary row operation σ. Let τ be the operation such that σ and τ undo each other. The operation τ is simulated as left multiplication by some matrix E_0. Then $E_0EA = EE_0A = A$ for any matrix A. When $A = I$, we get $E_0E = EE_0 = I$.