Lecture 25:
Markov chains (continued).
The Cayley-Hamilton theorem (continued).
Markov chain

Stochastic (or random) process is a sequence of experiments for which the outcome at any stage depends on a chance.

We consider a simple model, with a finite set S of possible outcomes (called **states**) and discrete time. Then the stochastic process is a sequence s_0, s_1, s_2, \ldots, where all $s_n \in S$ depend on chance.

Markov chain is a stochastic process with discrete time such that the probability of the next outcome depends only on the previous outcome.
Let $S = \{1, 2, \ldots, k\}$. The Markov chain is determined by transition probabilities $p_{ij}^{(t)}$, $1 \leq i, j \leq k$, $t \geq 0$, and by the initial probability distribution q_i, $1 \leq i \leq k$.

Here q_i is the probability of the event $s_0 = i$, and $p_{ij}^{(t)}$ is the conditional probability of the event $s_{t+1} = j$ provided that $s_t = i$. By construction, $p_{ij}^{(t)}$, $q_i \geq 0$, $\sum_i q_i = 1$, and $\sum_j p_{ij}^{(t)} = 1$.

We shall assume that the Markov chain is time-independent, i.e., transition probabilities do not depend on time: $p_{ij}^{(t)} = p_{ij}$.

Then a Markov chain on $S = \{1, 2, \ldots, k\}$ is determined by a probability vector $x_0 = (q_1, q_2, \ldots, q_k) \in \mathbb{R}^k$ and a $k \times k$ transition matrix $P = (p_{ij})$. The entries in each row of P add up to 1.
Example: random walk

Transition matrix: \[P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \\ 1 & 0 & 0 \end{pmatrix} \]
Problem. Find the (unconditional) probability distribution for any $s_n, \ n \geq 1$.

The probability distribution of s_{n-1} is given by a probability vector $\mathbf{x}_{n-1} = (a_1, \ldots, a_k)$. The probability distribution of s_n is given by a vector $\mathbf{x}_n = (b_1, \ldots, b_k)$. We have

$$b_j = a_1 p_{1j} + a_2 p_{2j} + \cdots + a_k p_{kj}, \ 1 \leq j \leq k.$$

That is,

$$(b_1, \ldots, b_k) = (a_1, \ldots, a_k) \begin{pmatrix} p_{11} & \cdots & p_{1k} \\ \vdots & \ddots & \vdots \\ p_{k1} & \cdots & p_{kk} \end{pmatrix}.$$
\[x_n = x_{n-1}P \quad \implies \quad x_t^n = (x_{n-1}P)^t = P^tx_{n-1}^t. \]

Thus \(x_t^n = Qx_t^{n-1} \), where \(Q = P^t \) and the vectors are regarded as row vectors.

Then \(x_t^n = Qx_t^{n-1} = Q(Qx_t^{n-2}) = Q^2x_t^{n-2}. \)

Similarly, \(x_t^n = Q^3x_t^{n-3} \), and so on.

Finally, \(x_t^n = Q^n x_t^0. \)
Example. Very primitive weather model: Two states: “sunny” (1) and “rainy” (2).

Transition matrix: \[P = \begin{pmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{pmatrix}. \]

Suppose that \(x_0 = (1, 0) \) (sunny weather initially).

Problem. Make a long-term weather prediction.

The probability distribution of weather for day \(n \) is given by the vector \(x_n^t = Q^n x_0^t \), where \(Q = P^t \).

To compute \(Q^n \), we need to diagonalize the matrix \[Q = \begin{pmatrix} 0.9 & 0.5 \\ 0.1 & 0.5 \end{pmatrix}. \]
\[\det(Q - \lambda I) = \begin{vmatrix} 0.9 - \lambda & 0.5 \\ 0.1 & 0.5 - \lambda \end{vmatrix} = \lambda^2 - 1.4\lambda + 0.4 = (\lambda - 1)(\lambda - 0.4). \]

Two eigenvalues: \(\lambda_1 = 1, \lambda_2 = 0.4. \)

\((Q - I)v = 0 \iff \begin{pmatrix} -0.1 & 0.5 \\ 0.1 & -0.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff (x, y) = t(5, 1), \ t \in \mathbb{R}. \)

\((Q - 0.4I)v = 0 \iff \begin{pmatrix} 0.5 & 0.5 \\ 0.1 & 0.1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff (x, y) = t(-1, 1), \ t \in \mathbb{R}. \)

\(v_1 = (5, 1)^t\) and \(v_2 = (-1, 1)^t\) are eigenvectors of \(Q\) belonging to eigenvalues 1 and 0.4, respectively.
\[x_0^t = \alpha v_1 + \beta v_2 \iff \begin{cases} 5\alpha - \beta = 1 \\ \alpha + \beta = 0 \end{cases} \iff \begin{cases} \alpha = 1/6 \\ \beta = -1/6 \end{cases} \]

Now \[x_n^t = Q^n x_0^t = Q^n (\alpha v_1 + \beta v_2) = \alpha (Q^n v_1) + \beta (Q^n v_2) = \alpha v_1 + (0.4)^n \beta v_2, \]
which converges to the vector \(\alpha v_1 = (5/6, 1/6)^t \) as \(n \to \infty \).

The vector \(x_\infty = (5/6, 1/6) \) gives the limit distribution. Also, it is a steady-state vector.

Remarks. In this example, the limit distribution does not depend on the initial distribution, but it is not always so. However 1 is always an eigenvalue of the matrix \(P \) (and hence \(Q \)) since \(P (1, 1, \ldots, 1)^t = (1, 1, \ldots, 1)^t \).
Multiplication of block matrices

Theorem Suppose that matrices X and Y are represented as block matrices: $X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, $Y = \begin{pmatrix} P & Q \\ R & S \end{pmatrix}$.

Then $XY = \begin{pmatrix} AP + BR & AQ + BS \\ CP + DR & CQ + DS \end{pmatrix}$ provided that all matrix products are well defined.

Corollary 1 Suppose that $(m + n) \times (m + n)$ matrices X and Y are represented as block matrices:

$$X = \begin{pmatrix} A & U \\ O & B \end{pmatrix}, \quad Y = \begin{pmatrix} A_1 & U_1 \\ O & B_1 \end{pmatrix},$$

where A and A_1 are $m \times m$ matrices, B and B_1 are $n \times n$ matrices, and O is the $n \times m$ zero matrix. Then

$$XY = \begin{pmatrix} AA_1 & U_2 \\ O & BB_1 \end{pmatrix}$$

for some $m \times n$ matrix U_2.
Corollary 2 Suppose that a square matrix X is represented as a block matrix: $X = \begin{pmatrix} A & U \\ O & B \end{pmatrix}$, where A and B are square matrices and O is a zero matrix. Then for any polynomial $p(x)$ we have $p(X) = \begin{pmatrix} p(A) & U_p \\ O & p(B) \end{pmatrix}$, where the matrix U_p depends on p.

Corollary 3 Using notation of Corollary 2, if $p_1(A) = O$ and $p_2(B) = O$ for some polynomials p_1 and p_2, then $p(X) = O$, where $p(x) = p_1(x)p_2(x)$.

Proof: We have $p(X) = p_1(X)p_2(X)$. By Corollary 2,

$$p_1(X) = \begin{pmatrix} O & U_{p_1} \\ O & p_1(B) \end{pmatrix}, \quad p_2(X) = \begin{pmatrix} p_2(A) & U_{p_2} \\ O & O \end{pmatrix}.$$ Multiplying these block matrices, we get the zero matrix.
Cayley-Hamilton Theorem

Theorem If A is a square matrix, then $p(A) = O$, where $p(x)$ is the characteristic polynomial of A, $p(\lambda) = \det(A - \lambda I)$.

Proof for a complex matrix A: The proof is by induction on the number n of rows in A. The base of induction is the case $n = 1$. This case is trivial as $A = (a)$ and $p(x) = a - x$.

For the inductive step, we are to prove that the theorem holds for $n = k + 1$ assuming it holds for $n = k$ (k any positive integer). Let a_0 be any complex eigenvalue of A and v_0 a corresponding eigenvector. Then $p(x) = (a_0 - x)p_0(x)$ for some polynomial p_0. Let us extend vector v_0 to a basis for \mathbb{C}^n (denoted α). We have $A = UXU^{-1}$, where U changes coordinates from α to the standard basis and X is a block matrix of the form $X = \begin{pmatrix} a_0 & C \\ O & B \end{pmatrix}$.
Cayley-Hamilton Theorem

We have $A = UXU^{-1}$, where U changes coordinates from α to the standard basis and X is a block matrix of the form

\[
X = \begin{pmatrix}
 a_0 & c_1 & \ldots & c_k \\
 0 & c_1 & \ldots & c_k \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & B
\end{pmatrix}.
\]

The characteristic polynomial of X is p since the matrix X is similar to A. We know from the previous lecture that $p(x) = p_1(x)p_2(x)$, where p_1 and p_2 are characteristic polynomials of (a_1) and B, resp. Since $p_1(x) = a_0 - x$ and $p(x) = (a_0 - x)p_0(x)$, we obtain $p_2(x) = p_0(x)$.

By the inductive assumption, $p_0(B) = O$. By Corollary 3, $p(X) = O$. Finally, $p(A) = Up(X)U^{-1} = UOU^{-1} = O$.
Example. \(A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \).

Characteristic polynomial:
\[
p(\lambda) = \det(A - \lambda I) = (2 - \lambda)(1 - \lambda)^2 \\
= (2 - \lambda)(1 - 2\lambda + \lambda^2) = 2 - 5\lambda + 4\lambda^2 - \lambda^3.
\]

By the Cayley-Hamilton theorem,
\[
2I - 5A + 4A^2 - A^3 = O \\
\implies \frac{1}{2}A(A^2 - 4A + 5I) = I \\
\implies A^{-1} = \frac{1}{2}(A^2 - 4A + 5I).
\]