MATH 423
Linear Algebra II

Lecture 31:
Dual space.
Adjoint operator.
Dual space

Let V be a vector space over a field \mathbb{F}.

Definition. The vector space $\mathcal{L}(V, \mathbb{F})$ of all linear functionals $\ell : V \to \mathbb{F}$ is called the **dual space** of V (denoted V' or V^*).

Theorem Let $\beta = \{v_\alpha\}_{\alpha \in \mathcal{A}}$ be a basis for V. Then

(i) any linear functional $\ell : V \to \mathbb{F}$ is uniquely determined by its restriction to β;

(ii) any function $f : \beta \to \mathbb{F}$ can be (uniquely) extended to a linear functional on V.

Thus we have a one-to-one correspondence between elements of the dual space V' and collections of scalars c_α, $\alpha \in \mathcal{A}$. Namely, $\ell \mapsto \{\ell(v_\alpha)\}_{\alpha \in \mathcal{A}}$.
Dual basis

Let $\beta = [v_1, v_2, \ldots, v_n]$ be a basis for a vector space V. For any $1 \leq i \leq n$ let f_i denote a unique linear functional on V such that $f_i(v_j) = 1$ if $i = j$ and 0 otherwise.

If $v = r_1v_1 + r_2v_2 + \cdots + r_nv_n$, then $f_i(v) = r_i$. That is, the functional f_i evaluates the ith coordinate of the vector v relative to the basis β.

Theorem The functionals f_1, f_2, \ldots, f_n form a basis for the dual space V' (called the dual basis of β).
Double dual space

The **double dual** of a vector space V is V'', the dual of V'. Since V' is a functional vector space, to any vector $v \in V$ we associate an evaluation mapping, denoted \hat{v}, given by $\hat{v}(f) = f(v)$, $v \in V$. This mapping is linear, hence it is an element of V''.

Theorem Consider a mapping $\chi : V \rightarrow V''$ given by $\chi(v) = \hat{v}$. Then

(i) χ is linear;
(ii) χ is one-to-one;
(iii) χ is onto if and only if $\dim V < \infty$.

Corollary 1 If V is finite-dimensional, then χ is an isomorphism of V onto V''.

Corollary 2 If V is finite-dimensional, then any basis for V' is the dual basis of some basis for V.
Dual linear transformation

Suppose \(V \) and \(W \) are vector spaces and \(L : V \to W \) is a linear transformation. The **dual transformation** of \(L \) is a transformation \(L' : W' \to V' \) given by \(L'(f) = f \circ L \). That is, \(L' \) precomposes each linear functional on \(W \) with \(L \).

It is easy to see that \(L'(f) \) is indeed a linear functional on \(V \). Also, \(L' \) is linear.

Suppose \(V \) and \(W \) are finite-dimensional. Let \(\beta \) be a basis for \(V \) and \(\gamma \) be a basis for \(W \). Let \(\beta' \) be the dual basis of \(\beta \) and \(\gamma' \) be the dual basis for \(\gamma \).

Theorem If \([L]_{\beta}^{\gamma} = A \) then \([L']_{\gamma'}^{\beta'} = A^t \).
Dual of an inner product space

Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$. For any $y \in V$ consider a function $\ell_y : V \rightarrow F$ given by $\ell_y(x) = \langle x, y \rangle$ for all $x \in V$. This function is linear.

Theorem Let $\theta : V \rightarrow V'$ be given by $\theta(v) = \ell_v$. Then (i) θ is linear if $F = \mathbb{R}$ and half-linear if $F = \mathbb{C}$; (ii) θ is one-to-one.

Corollary If V is finite-dimensional, then any linear functional on V is uniquely represented as ℓ_v for some $v \in V$.
Adjoint operator

Let L be a linear operator on an inner product space V.

Definition. The adjoint of L is a transformation $L^* : V \rightarrow V$ satisfying $\langle L(x), y \rangle = \langle x, L^*(y) \rangle$ for all $x, y \in V$.

Notice that the adjoint of L may not exist.

Theorem 1 If the adjoint L^* exists, then it is unique and linear.

Theorem 2 If V is finite-dimensional, then the adjoint operator L^* always exists.

Properties of adjoint operators:

- $(L_1 + L_2)^* = L_1^* + L_2^*$
- $(rL)^* = \overline{r} L^*$
- $(L_1 \circ L_2)^* = L_2^* \circ L_1^*$
- $(L^*)^* = L$
- $\text{id}_V^* = \text{id}_V$