Lecture 34:
Unitary operators.
Orthogonal matrices.
Diagonalization of normal operators

Theorem A linear operator L on a finite-dimensional inner product space V is normal if and only if there exists an orthonormal basis for V consisting of eigenvectors of L.

Corollary 1 Suppose L is a normal operator. Then

(i) L is self-adjoint if and only if all eigenvalues of L are real ($\lambda = \overline{\lambda}$);

(ii) L is anti-selfadjoint if and only if all eigenvalues of L are purely imaginary ($\overline{\lambda} = -\lambda$);

(iii) L is unitary if and only if all eigenvalues of L are of absolute value 1 ($\overline{\lambda} = \lambda^{-1}$).

Idea of the proof: $L(x) = \lambda x \iff L^*(x) = \overline{\lambda} x$.

Corollary 2 A linear operator L on a finite-dimensional, real inner product space V is self-adjoint if and only if there exists an orthonormal basis for V consisting of eigenvectors of L.

Diagonalization of normal matrices

Theorem Matrix $A \in M_{n,n}(\mathbb{C})$ is normal if and only if there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A.

Corollary 1 Suppose $A \in M_{n,n}(\mathbb{C})$ is a normal matrix. Then

(i) A is Hermitian if and only if all eigenvalues of A are real;
(ii) A is skew-Hermitian if and only if all eigenvalues of A are purely imaginary;
(iii) A is unitary if and only if all eigenvalues of A are of absolute value 1.

Corollary 2 Matrix $A \in M_{n,n}(\mathbb{R})$ is symmetric if and only if there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A.
Example. $A_\phi = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$, $\phi \in \mathbb{R}$.

- $A_\phi A_\psi = A_{\phi+\psi}$

$$
A_\phi A_\psi = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} \cos \psi & -\sin \psi \\ \sin \psi & \cos \psi \end{pmatrix} =
\begin{pmatrix}
\cos \phi \cos \psi - \sin \phi \sin \psi & -\cos \phi \sin \psi - \sin \phi \cos \psi \\
\sin \phi \cos \psi + \cos \phi \sin \psi & \cos \phi \cos \psi - \sin \phi \sin \psi
\end{pmatrix}
= \begin{pmatrix}
\cos(\phi + \psi) & -\sin(\phi + \psi) \\
\sin(\phi + \psi) & \cos(\phi + \psi)
\end{pmatrix} = A_{\phi+\psi}.
$$

- $A_0 = I$

$$
A_0 = \begin{pmatrix} \cos 0 & -\sin 0 \\ \sin 0 & \cos 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I.
$$
Example. \(A_{\phi} = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \), \(\phi \in \mathbb{R} \).

- \(A_{\phi}^{-1} = A_{-\phi} \)

\[A_{\phi}A_{-\phi} = A_{\phi+(-\phi)} = A_0 = I \implies A_{\phi}^{-1} = A_{-\phi}. \]

- \(A_{-\phi} = A_{\phi}^t \)

\[A_{-\phi} = \begin{pmatrix} \cos(-\phi) & -\sin(-\phi) \\ \sin(-\phi) & \cos(-\phi) \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{pmatrix} = A_{\phi}^t. \]

- \(A_{\phi} \) is orthogonal

\[A_{\phi}^t = A_{-\phi} = A_{\phi}^{-1} \implies A_{\phi} \) is orthogonal.
Example. \(A_\phi = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \), \(\phi \in \mathbb{R} \).

Characteristic polynomial:
\[
\det(A_\phi - \lambda) = \begin{vmatrix} \cos \phi - \lambda & -\sin \phi \\ \sin \phi & \cos \phi - \lambda \end{vmatrix} = (\cos \phi - \lambda)^2 + \sin^2 \phi.
\]

Eigenvalues: \(\lambda_1 = \cos \phi + i \sin \phi = e^{i\phi} \),
\(\lambda_2 = \cos \phi - i \sin \phi = e^{-i\phi} \).

Associated eigenvectors: \(\mathbf{v}_1 = (1, -i)^t \), \(\mathbf{v}_2 = (1, i)^t \).

\[
A_\phi \mathbf{v}_1 = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} \cos \phi + i \sin \phi \\ \sin \phi - i \cos \phi \end{pmatrix} = \lambda_1 \mathbf{v}_1.
\]

Note that \(\lambda_2 = \overline{\lambda_1} \) and \(\mathbf{v}_2 = \overline{\mathbf{v}_1} \). Since the matrix \(A_\phi \) has real entries, \(A_\phi \mathbf{v}_1 = \lambda_1 \mathbf{v}_1 \) implies \(A_\phi \overline{\mathbf{v}_1} = \overline{\lambda_1} \overline{\mathbf{v}_1} \).

We have \(\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 1 \cdot 1 + (-i) \cdot i = 1 + (-i)^2 = 0 \),
\(\langle \mathbf{v}_1, \mathbf{v}_1 \rangle = \langle \mathbf{v}_2, \mathbf{v}_2 \rangle = 2 \). Hence vectors \(\frac{1}{\sqrt{2}} \mathbf{v}_1 \) and \(\frac{1}{\sqrt{2}} \mathbf{v}_2 \) form an orthonormal basis for \(\mathbb{C}^2 \).
Characterization of unitary matrices

Theorem Given an $n \times n$ matrix A with complex entries, the following conditions are equivalent:

(i) A is unitary: $A^* = A^{-1}$;
(ii) columns of A form an orthonormal basis for \mathbb{C}^n;
(iii) rows of A form an orthonormal basis for \mathbb{C}^n.

Sketch of the proof: Entries of the matrix A^*A are inner products of columns of A. Entries of AA^* are inner products of rows of A. It follows that $A^*A = I$ if and only if the columns of A form an orthonormal set. Similarly, $AA^* = I$ if and only if the rows of A form an orthonormal set.

The theorem implies that a unitary matrix is the transition matrix changing coordinates from one orthonormal basis to another.
Diagonalization of normal matrices: revisited

Theorem 1 Given an $n \times n$ matrix A with complex entries, the following conditions are equivalent:

(i) A is normal: $A^* A = AA^*$;

(ii) there exists an orthonormal basis for \mathbb{C}^n consisting of eigenvectors of A;

(iii) there exists a diagonal matrix D and a unitary matrix U such that $A = U D U^{-1}$ ($= U D U^*$).

Theorem 2 Given an $n \times n$ matrix A with real entries, the following conditions are equivalent:

(i) A is symmetric: $A^t = A$;

(ii) there exists an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of A;

(iii) there exists a diagonal matrix D (with real entries) and an orthogonal matrix U such that $A = U D U^{-1}$ ($= U D U^t$).
Characterizations of unitary operators

Theorem Given a linear operator on a finite-dimensional inner product space V, the following conditions are equivalent:

(i) L is unitary;
(ii) $\langle L(x), L(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$;
(iii) $\|L(x)\| = \|x\|$ for all $x \in V$;
(iv) the matrix of A relative to an orthonormal basis is unitary;
(v) L maps some orthonormal basis for V to another orthonormal basis;
(vi) L maps any orthonormal basis for V to another orthonormal basis.

Proof that $(i) \implies (ii)$: $\langle L(x), L(y) \rangle = \langle x, L^*(L(y)) \rangle = \langle x, y \rangle$.