Test 1: Solutions

Problem 1 (20 pts.) Determine which of the following subsets of the vector space \mathbb{R}^3 are subspaces. Briefly explain.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $xyz = 0$.
(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $x + y - z = 0$.
(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $x^2 - y^2 = 0$.
(iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $e^x + e^y = 0$.

Solution: S_2 and S_2' are subspaces of \mathbb{R}^3, the other sets are not.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, a subspace must not be empty.

The set S_1 is the union of three planes $x = 0$, $y = 0$, and $z = 0$. It is not closed under addition as the following example shows: $(1, 1, 0) + (0, 0, 1) = (1, 1, 1)$.

S_2 is a plane passing through the origin. It is easy to check that S_2 is closed under addition and scalar multiplication. Alternatively, S_2 is a subspace of \mathbb{R}^3 since it is the null-space of a linear functional $\ell : \mathbb{R}^3 \to \mathbb{R}$ given by $\ell(x, y, z) = x + y - z$, $(x, y, z) \in \mathbb{R}^3$.

S_2' is a subspace of \mathbb{R}^3 since it is the null-space of a linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$
L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y - z \\ 2y - 3z \end{pmatrix}
$$

for all $x, y, z \in \mathbb{R}$.

Since $x^2 - y^2 = (x - y)(x + y)$, the set S_3 is the union of two planes $x - y = 0$ and $x + y = 0$. The following example shows that S_3 is not closed under addition: $(1, 1, 0) + (1, -1, 0) = (2, 0, 0)$.

The set S_4 is the intersection of two planes $2y - 3z = 0$ and $2x - 3y = 1$. Hence S_4 is a line. One of the planes does not pass through the origin so that S_4 does not contain the zero vector. Therefore this set is not a subspace.

Since $e^x > 0$ for any $x \in \mathbb{R}$, the set S_4' is empty. The empty set is not a subspace.

Thus S_2 and S_2' are subspaces of \mathbb{R}^3 while S_1, S_3, S_4, and S_4' are not.

Problem 2 (25 pts.) Let W be a subspace of $\mathcal{M}_{2,2}(\mathbb{R})$ spanned by matrices $A, A^2, A^3, \ldots, A^n, \ldots$, where

$$
A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}.
$$

Find a basis for W, then extend it to a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.

Solution: $\{A, A^2\}$ is a basis for W; the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ extend it to a basis for $\mathcal{M}_{2,2}(\mathbb{R})$.

1
First we compute several powers of the matrix A:

$$A^2 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}, \quad A^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A^4 = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}.$$

Since $A^3 = I$, we have $A^{k+3} = A^k A^3 = A^k$ for any integer $k > 0$. It follows that $A^{3m} = I$, $A^{1+3m} = A$, and $A^{2+3m} = A^2$ for any integer $m > 0$. Therefore the subspace W is spanned by the matrices A, A^2, and $A^3 = I$. Further, we have $A + A^2 + A^3 = 0$. Hence $A^3 = -A - A^2$, which implies that A and A^2 span W as well. Clearly, A and A^2 are linearly independent. Therefore $\{A, A^2\}$ is a basis for W.

The matrices

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad E_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

form a basis for the vector space $\mathcal{M}_{2,2}(\mathbb{R})$. For example, we can extend the set $\{A, A^2\}$ to a basis for $\mathcal{M}_{2,2}(\mathbb{R})$ by adding two of these matrices. To verify this, it is enough to show that the matrices A, A^2, E_1, E_2 are linearly independent. Assume that $r_1 A + r_2 A^2 + r_3 E_1 + r_4 E_2 = 0$ for some scalars $r_1, r_2, r_3, r_4 \in \mathbb{R}$. Since

$$r_1 A + r_2 A^2 + r_3 E_1 + r_4 E_2 = r_1 \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} + r_2 \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} + r_3 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + r_4 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} -r_1 + r_3 & r_1 - r_2 + r_4 \\ -r_1 + r_2 & -r_2 \end{pmatrix},$$

we have $-r_1 + r_3 = r_1 - r_2 + r_4 = -r_1 + r_2 = -r_2 = 0$. It follows that $r_1 = r_2 = r_3 = r_4 = 0$. Thus A, A^2, E_1, E_2 are linearly independent.

Problem 3 (20 pts.) Let V_1, V_2, and V_3 be finite-dimensional vector spaces. Suppose that $L : V_1 \rightarrow V_2$ and $T : V_2 \rightarrow V_3$ are linear transformations. Prove that $\text{rank}(T \circ L) \leq \text{rank}(L)$ and $\text{rank}(T \circ L) \leq \text{rank}(T)$.

Since $(T \circ L)(x) = T(L(x))$ for any $x \in V_1$, it follows that the range of the composition $T \circ L$ is contained in the range of T: $\mathcal{R}(T \circ L) \subseteq \mathcal{R}(T)$. Then $\dim \mathcal{R}(T \circ L) \leq \dim \mathcal{R}(T)$, that is, $\text{rank}(T \circ L) \leq \text{rank}(T)$.

By the Dimension Theorem, $\dim \mathcal{R}(L) + \dim \mathcal{N}(L) = \dim \mathcal{R}(T \circ L) + \dim \mathcal{N}(T \circ L) = \dim V_1$. Since $\text{rank}(L) = \dim \mathcal{R}(L)$ and $\text{rank}(T \circ L) = \dim \mathcal{R}(T \circ L)$, the inequality $\text{rank}(T \circ L) \leq \text{rank}(L)$ is equivalent to the inequality $\dim \mathcal{N}(T \circ L) \geq \dim \mathcal{N}(L)$. We are going to prove the latter.

Let 0_i denote the zero vector in the vector space V_i, $1 \leq i \leq 3$. If $L(x) = 0_2$ for some vector $x \in V_1$, then $(T \circ L)(x) = T(L(x)) = 0_3$, which equals 0_3 since the transformation T is linear. This means that the null-space of L is contained in the null-space of $T \circ L$: $\mathcal{N}(L) \subseteq \mathcal{N}(T \circ L)$. Consequently, $\dim \mathcal{N}(L) \leq \dim \mathcal{N}(T \circ L)$.

Problem 4 (25 pts.) The functions $f_1(x) = x \sin x$, $f_2(x) = x \cos x$, $f_3(x) = \sin x$, and $f_4(x) = \cos x$ span a 4-dimensional subspace V of the vector space $\mathcal{F}(\mathbb{R})$. Consider a linear transformation $D : V \rightarrow \mathcal{F}(\mathbb{R})$ given by $D(f) = f'$ for all functions $f \in V$.

(i) Show that the range of D is V and the null-space of D is trivial.

(ii) Find the matrix of D (regarded as an operator on V) relative to the basis f_1, f_2, f_3, f_4.

2
Since it is given that the functions \(f_1, f_2, f_3, f_4 \) span a 4-dimensional subspace, they must be linearly independent and form a basis for the subspace. First we compute the images of these functions under the transformation \(D \):

\[
(D f_1)(x) = f_1'(x) = (x \sin x)' = x \cos x + \sin x = f_2(x) + f_3(x),
\]

\[
(D f_2)(x) = f_2'(x) = (x \cos x)' = -x \sin x + \cos x = -f_1(x) + f_4(x),
\]

\[
(D f_3)(x) = f_3'(x) = (\sin x)' = \cos x = f_4(x),
\]

\[
(D f_4)(x) = f_4'(x) = (\cos x)' = -\sin x = -f_3(x).
\]

Since all four images are in \(V \), it follows that the entire range of \(D \) is contained in \(V \). Also, we can write down the matrix of \(D \) (regarded as an operator on \(V \)) relative to the basis \(f_1, f_2, f_3, f_4 \):

\[
\begin{pmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0
\end{pmatrix}.
\]

To prove that the range \(\mathcal{R}(D) \) coincides with \(V \), it is enough to show that each of the functions \(f_1, f_2, f_3, f_4 \) is in \(\mathcal{R}(D) \). Indeed,

\[
D(-f_2 + f_3) = -D(f_2) + D(f_3) = -(-f_1 + f_4) + f_4 = f_1,
\]

\[
D(f_1 + f_4) = D(f_1) + D(f_4) = (f_2 + f_3) + (-f_3) = f_2,
\]

\[
D(-f_4) = -D(f_4) = -(-f_3) = f_3,
\]

\[
D(f_3) = f_4.
\]

By the Dimension Theorem, \(\dim \mathcal{R}(D) + \dim \mathcal{N}(D) = \dim V \). Since the range of \(D \) is \(V \), it follows that \(\dim \mathcal{N}(D) = 0 \). Thus the null-space \(\mathcal{N}(D) \) is trivial.

Problem 4' (25 pts.) The functions \(f_1(x) = x \sin x, f_2(x) = x \cos x, f_3(x) = \sin x, \) and \(f_4(x) = \cos x \) span a 4-dimensional subspace \(V \) of the vector space \(\mathcal{F}(\mathbb{R}) \). Consider a linear transformation \(L : V \to \mathcal{F}(\mathbb{R}) \) given by \((Lf)(x) = f(x + 1), x \in \mathbb{R}\) for all functions \(f \in V \).

(i) Show that the range of \(L \) is \(V \) and the null-space of \(L \) is trivial.

(ii) Find the matrix of \(L \) (regarded as an operator on \(V \)) relative to the basis \(f_1, f_2, f_3, f_4 \).

Solution: the matrix of \(L \) is

\[
\begin{pmatrix}
\cos 1 & -\sin 1 & 0 & 0 \\
\sin 1 & \cos 1 & 0 & 0 \\
\cos 1 & -\sin 1 & \cos 1 & -\sin 1 \\
\sin 1 & \cos 1 & \sin 1 & \cos 1
\end{pmatrix}.
\]

Since it is given that the functions \(f_1, f_2, f_3, f_4 \) span a 4-dimensional subspace, they must be linearly independent and form a basis for the subspace. First we compute the images of these functions under
the transformation L:

$$
(Lf_1)(x) = f_1(x + 1) = (x + 1)\sin(x + 1) = (x + 1)(\sin x \cos 1 + \cos x \sin 1) = \\
(\cos 1)f_1(x) + (\sin 1)f_2(x) + (\cos 1)f_3(x) + (\sin 1)f_4(x),
$$

$$
(Lf_2)(x) = f_2(x + 1) = (x + 1)\cos(x + 1) = (x + 1)(\cos x \cos 1 - \sin x \sin 1) = \\
(- \sin 1)f_1(x) + (\cos 1)f_2(x) + (- \sin 1)f_3(x) + (\cos 1)f_4(x),
$$

$$
(Lf_3)(x) = f_3(x + 1) = \sin(x + 1) = \sin x \cos 1 + \cos x \sin 1 = \\
(\cos 1)f_3(x) + (\sin 1)f_4(x),
$$

$$
(Lf_4)(x) = f_4(x + 1) = \cos(x + 1) = \cos x \cos 1 - \sin x \sin 1 = \\
(- \sin 1)f_3(x) + (\cos 1)f_4(x).
$$

Since all four images are in V, it follows that the entire range of L is contained in V. Also, we can write down the matrix of L (regarded as an operator on V) relative to the basis f_1, f_2, f_3, f_4:

$$
\begin{pmatrix}
\cos 1 & -\sin 1 & 0 & 0 \\
\sin 1 & \cos 1 & 0 & 0 \\
\cos 1 & -\sin 1 & \cos 1 & -\sin 1 \\
\sin 1 & \cos 1 & \sin 1 & \cos 1
\end{pmatrix}.
$$

It follows from the definition of the operator L that the function Lf is identically zero only if f is identically zero. Hence the null-space of L is trivial.

By the Dimension Theorem, $\dim \mathcal{R}(L) + \dim \mathcal{N}(L) = \dim V$. Since the null-space of L is trivial, we have $\dim \mathcal{N}(L) = 0$ so that $\dim \mathcal{R}(L) = \dim V$. Since the range $\mathcal{R}(L)$ is contained in V, it follows that $\mathcal{R}(L) = V$.

Bonus Problem 5 (15 pts.) The set \mathbb{R}_+ of positive real numbers is a (real) vector space with respect to unusual operations of addition and scalar multiplication given by $x \oplus y = xy$ and $r \odot x = x^r$ for all $x, y \in \mathbb{R}_+$ and $r \in \mathbb{R}$. Prove that this vector space is isomorphic to \mathbb{R} (with usual linear operations).

An isomorphism is provided by the logarithmic function $f(x) = \log x$ (to any base). Indeed, f is a one-to-one mapping of \mathbb{R}_+ onto \mathbb{R}. Since $\log(xy) = \log x + \log y$ for any $x, y > 0$, we have $f(x \oplus y) = f(x) + f(y)$. Since $\log x^r = r \log x$ for any $x > 0$ and $r \in \mathbb{R}$, we have $f(r \odot x) = rf(x)$. Thus f is a linear mapping.

Bonus Problem 5’ (15 pts.) Prove that the real numbers $\sqrt{2}$, $\sqrt{3}$, and $\sqrt{6}$ are linearly independent over \mathbb{Q}.

Assume that $a\sqrt{2} + b\sqrt{3} + c\sqrt{6} = 0$ for some rational numbers a, b, and c. We have to prove that $a = b = c = 0$.

Indeed, the equality $a\sqrt{2} + b\sqrt{3} + c\sqrt{6} = 0$ is equivalent to $a\sqrt{2} + b\sqrt{3} = -c\sqrt{6}$. Squaring both sides of the latter, we obtain $(a\sqrt{2} + b\sqrt{3})^2 = (-c\sqrt{6})^2$. After simplification, $2ab\sqrt{6} + 2a^2 + 3b^2 = 6c^2$. Since the numbers $2ab, 2a^2 + 3b^2$, and $6c^2$ are rational while $\sqrt{6}$ is not, it follows that $2ab = 0$. Then $a = 0$ or $b = 0$. In the first case, we have $b\sqrt{3} + c\sqrt{6} = 0$, which implies that $b = 0$ as otherwise $1/\sqrt{2} = -c/b$, a rational number. In the second case, we have $a\sqrt{2} + c\sqrt{6} = 0$, which implies that $a = 0$ as otherwise $1/\sqrt{3} = -c/a$, a rational number. Thus $a = b = 0$ in any case. Then $c = 0$ as well.