TEXAS A\&M UNIVERSITY DEPARTMENT OF MATHEMATICS
 MATH 308-506
 Exam 1.A, 21 Sep 2005

1. Sketch the direction field for the equation

$$
\frac{d x}{d t}=5 x(x-1)^{2}(2-x)
$$

in the region $0 \leq t \leq 1,0 \leq x \leq 2.5$. What is the $t \rightarrow \infty$ limit of the solution satisfying $x(0)=1.5$? Can the solution satisfying $x(0)=0.5$ ever grow to 1.5 ? Justify.
2. Solve the IVP

$$
\frac{d x}{d t}=x^{2}(1+\sin (t)), \quad x(0)=1
$$

3. Solve the IVP

$$
\cos (x) \frac{d y}{d x}+2 \sin (x) y=x \cos ^{3}(x), \quad y(0)=2
$$

4. The body of a murder victim was discovered at 6 pm . Police officers measured the body temperature at 6.10 pm and then again at 7.10 pm ; the temperature readings were $29^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ correspondingly. The temperature of the building is maintained by an air conditioning system at the constant $21^{\circ} \mathrm{C}$. Assuming the victim had the normal temperature of $37^{\circ} \mathrm{C}$ at the time of the murder, what time did the murder happen? Use Newton's law of cooling

$$
\frac{d T}{d t}=k(M-T)
$$

where T is the temperature of the body, M is the temperature of the environment and k is a proportionality coefficient. Write down the equations you are solving. (Hint: take 6.10 pm as $t=0$).
5. A sailboat has been running (on a straight course) under a light wind at $1 \mathrm{~m} / \mathrm{sec}$. Suddenly the wind picks up, blowing hard enough to apply a constant force of 600 N to the boat. The only other force on the boat is water resistance that is proportional to the velocity of the boat with the proportionality constant $b=100 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. If the mass of the boat is 150 kg , find the velocity of the boat as a function of t. What is the limiting velocity of the boat.
(8 marks)

