Quiz solutions

January 17, 2019

1. Suppose \vec{v} is a vector. For each of the following quantities, say if it is a vector, a scalar, or a meaningless expression.
(a) $5 \vec{v}$
(b) $5+\vec{v}$
(c) $5+|\vec{v}|$
(d) $|5 \vec{v} \cdot \vec{v}|$

Solution. (a) vector $\begin{array}{llll}\text { (b) meaningless } & \text { (c) scalar } & \text { (d) scalar }\end{array}$
2. Suppose $\vec{v}+\vec{w}=\langle 3,-3\rangle$ and $\vec{v}-\vec{w}=\langle-1,3\rangle$.

Find $\vec{v}+2 \vec{w}$.

Solution. Adding the two equations shows that $2 \vec{v}=\langle 2,0\rangle$, so $\vec{v}=\langle 1,0\rangle$. Substituting this value into the first equation and solving for \vec{w} shows that $\vec{w}=\langle 2,-3\rangle$. Therefore $\vec{v}+2 \vec{w}=\langle 1,0\rangle+\langle 4,-6\rangle=\langle 5,-6\rangle$.
3. Suppose $\vec{v}=3 \vec{\imath}+4 \vec{\jmath}$, and $\vec{v} \cdot \vec{w}=0$, and $|\vec{w}|=1$. There are two solutions for \vec{w}. Find both of them.

Solution. If $\vec{w}=w_{1} \vec{\imath}+w_{2} \vec{\jmath}$, then $\vec{v} \cdot \vec{w}=3 w_{1}+4 w_{2}$. So $\vec{v} \cdot \vec{w}=0$ precisely when $3 w_{1}=-4 w_{2}$. There are infinitely many choices of w_{1} and w_{2} that make this equation true: $w_{1}=4 t$ and $w_{2}=-3 t$, where t is any number.
At this point what is known is that \vec{w} has the form $\langle 4 t,-3 t\rangle$. But there is the additional constraint that $|\vec{w}|=1$. This additional property holds when $t= \pm 1 / 5$. So the two solutions are $\vec{w}=\langle 4 / 5,-3 / 5\rangle$ and $\vec{w}=\langle-4 / 5,3 / 5\rangle$.

