Quiz solutions

January 17, 2019

- 1. Suppose \vec{v} is a vector. For each of the following quantities, say if it is a vector, a scalar, or a meaningless expression.
 - (a) $5\vec{v}$ (b) $5 + \vec{v}$ (c) $5 + |\vec{v}|$ (d) $|5\vec{v} \cdot \vec{v}|$
 - Solution. (a) vector (b) meaningless (c) scalar (d) scalar
- 2. Suppose $\vec{v} + \vec{w} = \langle 3, -3 \rangle$ and $\vec{v} \vec{w} = \langle -1, 3 \rangle$. Find $\vec{v} + 2\vec{w}$.

Solution. Adding the two equations shows that $2\vec{v} = \langle 2, 0 \rangle$, so $\vec{v} = \langle 1, 0 \rangle$. Substituting this value into the first equation and solving for \vec{w} shows that $\vec{w} = \langle 2, -3 \rangle$. Therefore $\vec{v} + 2\vec{w} = \langle 1, 0 \rangle + \langle 4, -6 \rangle = \langle 5, -6 \rangle$.

3. Suppose $\vec{v} = 3\vec{i} + 4\vec{j}$, and $\vec{v} \cdot \vec{w} = 0$, and $|\vec{w}| = 1$. There are two solutions for \vec{w} . Find both of them.

Solution. If $\vec{w} = w_1 \vec{\imath} + w_2 \vec{j}$, then $\vec{v} \cdot \vec{w} = 3w_1 + 4w_2$. So $\vec{v} \cdot \vec{w} = 0$ precisely when $3w_1 = -4w_2$. There are infinitely many choices of w_1 and w_2 that make this equation true: $w_1 = 4t$ and $w_2 = -3t$, where t is any number.

At this point what is known is that \vec{w} has the form $\langle 4t, -3t \rangle$. But there is the additional constraint that $|\vec{w}| = 1$. This additional property holds when $t = \pm 1/5$. So the two solutions are $\vec{w} = \langle 4/5, -3/5 \rangle$ and $\vec{w} = \langle -4/5, 3/5 \rangle$.