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1. Find the radius of convergence of the power series
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Solution. Method 1: Apply the root test. The limit that needs to be computed is
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In computing the limit as n → ∞, there is no harm in supposing that n is large, say n ≥ 3.
The triangle inequality then implies that

1
2
n2 < n2 − 1 ≤ |n2 + in| ≤ n2 + 1 < 2n2.

Therefore
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(
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Since 21∕n → 1 when n → ∞, and n1∕n → 1 when n → ∞, the squeeze theorem implies
that |n2+ in|1∕n → 1 when n → ∞. The same assumption on n implies that 1 < log(n) < n,
so the squeeze theorem similarly implies that (log(n))1∕n → 1 when n→ ∞.
The upshot is that the original limit equals |z−2|. The root test says that the series converges
when |z − 2| < 1 and diverges when |z − 2| > 1. Thus the radius of convergence is equal
to 1: the series converges in the disk where |z − 2| < 1 but converges in no larger disk
centered at 2.
Method 2: Apply the ratio test. The limit that needs to be computed is
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which reduces to
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Dividing numerator and denominator by n2 shows that

lim
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The fundamental property of real logarithms shows that
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log(n)
→ 1 when n→ ∞.
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(Alternatively, you could apply l’Hôpital’s rule here.) Therefore the original limit reduces
to |z − 2|, so the series converges when |z − 2| < 1 and diverges when |z − 2| > 1, the
same conclusion as before.

2. Find the radius of convergence of the Taylor series of tan(z) with center at the point 1 + i.

Solution. By the second corollary on page 146 of the textbook, the radius of convergence
is the distance from the center point 1 + i to the nearest singularity of the function tan(z),
which evidently is the point �∕2. So the radius of convergence is |(�∕2) − (1 + i)|, or
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Remark. You really do not want to try to compute this Taylor series explicitly! Even the
Maclaurin series (center at the origin) of tan(z) is complicated. Here is how that Maclaurin
series is written in formula 4.19.3 of the Digital Library of Mathematical Functions:

tan(z) = z + z3

3
+ 2

15
z5 + 17
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(−1)n−122n(22n − 1)B2n

(2n)!
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whereB2n denotes a so-called Bernoulli number. The Bernoulli numbers, which are named
for Jacob Bernoulli (1655–1705), appear in Exercise 4 on page 154 of the textbook, where
they are defined via a series expansion for the cotangent function. (Compare formula 4.19.6
in the Digital Library of Mathematical Functions.) But usually the Bernoulli numbers are
defined by the following series expansion:

z
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=
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Notice that the function on the left-hand side has a removable singularity at the origin (in
the terminology that we just learned).
Values of Bernoulli numbers are available in Maple through the command bernoulli and
in Mathematica through the command BernoulliB. Or you can ask WolframAlpha to tell
you the “fourth Bernoulli number” (for example).
The Bernoulli numbers have numerous applications in number theory and in analysis. For
instance, you may have encountered the following formulas for special infinite series:
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The general case can be formulated in terms of Bernoulli numbers:
∞
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=
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, where k is a natural number.
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