
Math 409 Advanced Calculus
Examination 1

Spring 2018

Part A: Sentence Completion

Your answer to each of problems 1–3 should be a complete sentence that starts as indicated.

1. The statement “ lim
n→∞

xn = L” means that for every positive real number ", there exists . . . .

Solution. The statement “ lim
n→∞

xn = L” means that for every positive number ", there exists
a number M such that |xn − L| < " when n ≥ M . [Definition 2.1.2]

2. The set of real numbers is the only ordered field that additionally . . . .

Solution. The set of real numbers is the only ordered field that additionally has the least-
upper-bound property (the completeness property). [Theorem 1.2.1]

3. The Archimedean property states that . . . .

Solution. The Archimedean property states that if x is a positive real number, and y is a
real number, then there exists a natural number n such that nx > y. [Theorem 1.2.4]
A simpler, equivalent version of the Archimedean property is that the set of natural numbers
has no upper bound in the real numbers.

Part B: Examples

Your task in problems 4–5 is to exhibit a concrete example satisfying the indicated property. You
should provide a brief explanation of why your example works.

4. Give an example of a set of real numbers that has a supremum but not a maximum.

Solution. One example is the open interval (0, 1). The supremum (least upper bound) is
the number 1, but this number is not an element of the interval, so the number 1 is not a
maximum.

5. Give an example of a bounded sequence of real numbers that does not converge.

Solution. One example is the sequence {(−1)n}∞n=1, the sequence of alternating −1 and 1.
The sequence is bounded, since all the terms have absolute value equal to 1. The sequence
does not converge, for every two consecutive terms have distance 2 from each other.
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Part Γ: Proof

Your proof should be written in complete sentences, each step being justified. You may invoke
theorems from the textbook, in which case you should indicate what the cited theorems say.

6. Suppose x1 = 5, and xn+1 =
1 + xn

2
when n ≥ 1. Prove that this recursively defined

sequence {xn}∞n=1 converges.

Solution. Method 1. Apply the monotone convergence theorem, one version of which
says that if a sequence is decreasing and bounded below, then the sequence must converge
(and the limit is the infimum of the terms of the sequence).
To show by induction that the sequence is bounded below by 0, first observe that x1 =
5 > 0, so the basis step holds. Next, if n is a natural number for which xn > 0, then
xn+1 =

1+xn
2

> 1+0
2

> 0. Accordingly, the induction step holds. By mathematical induction,
all the terms of the sequence are greater than 0.
To show by induction that the sequence is decreasing, first observe that

x2 =
1 + x1
2

= 1 + 5
2

= 3 < 5 = x1,

so x2 < x1 (the basis step). Next, if n is a natural number for which xn+1 < xn, then

xn+2 =
1 + xn+1

2
<
1 + xn

2
= xn+1, so xn+2 < xn+1.

Accordingly, the induction step holds. Bymathematical induction, the sequence is (strictly)
decreasing.
Since the sequence is decreasing and bounded below, the monotone convergence theorem
implies that the sequence converges to some limit L.
Remark. The problem does not ask for the value ofL, but this value is easy to find. Passing
to the limit in the equation defining the sequence shows that

L = 1 + L
2

, so L = 1.

Method 2. In view of the preceding remark, the only candidate for the limit is the number 1,
so let an denote the quantity xn − 1. Showing that lim

n→∞
xn exists and equals 1 is equivalent

to showing that lim
n→∞

an exists and equals 0. If n is an arbitrary natural number, then

an+1 = xn+1 − 1 =
1 + xn

2
− 1 =

xn − 1
2

= 1
2
an.
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Thus the sequence {an}∞n=1 is a geometric sequence with multiplier 1
2
. A proposition about

geometric sequences [Proposition 2.2.11] states that a geometric sequence with positive
multiplier less than 1 converges to 0. So lim

n→∞
an = 0, as required.

Method 3. It is possible to solve the recursion to find a closed-form expression for the
general term of this particular sequence. The pattern is that each term equals 1

2
plus 1

2
times

the preceding term, so by writing out the first few terms you may be able to guess that
xn = 1+

8
2n
. Once you have guessed this formula, you can prove the validity of the formula

by induction. For the basis step (n = 1), observe that 1 + 8
21
= 5 = x1. For the induction

step, suppose it is known for a certain natural number n that xn = 1 +
8
2n
. Then

xn+1 =
1 + xn

2
=
1 + 1 + 8

2n

2
= 1 + 8

2n+1
,

so the indicated formula holds for the next natural number. By induction, the proposed
formula for xn holds for every natural number n.
With an explicit formula for the general term in hand, you can apply standard theorems
about limits. The sequence

{

1
2n

}∞

n=1
is a known geometric sequence that has limit 0. Since

limits preserve products, lim
n→∞

8
2n
= 0. Since limits preserve sums, lim

n→∞

(

1 + 8
2n

)

= 1. Thus
lim
n→∞

xn exists and equals 1.

Part Δ: Optional Extra Credit Problem

Let {xn}∞n=1 be a sequence of real numbers. Suppose

yn = x2n and zn =
xn

x2n + xn + 1
when n ∈ ℕ.

Prove that if both of the sequences {yn}∞n=1 and {zn}
∞
n=1 converge, then the sequence {xn}∞n=1 must

converge too.

Solution. Auseful initial observation is that the expression for zn is well defined: the denominator
is never equal to 0. Indeed, completing the square shows that the quadratic expression x2 + x+ 1

can be rewritten as
(

x + 1
2

)2
+ 3

4
, a quantity that is positive for every real number x (squares

cannot be negative in an ordered field).
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Method 1. Solve for xn in terms of yn and zn. Multiplying by the denominator in the expression
for zn shows that

zn(x2n + xn + 1) = xn, or
znyn + zn = xn(1 − zn), or
znyn + zn
1 − zn

= xn as long as zn ≠ 1.

Limits respect sums, products, and quotients, as long as there is no division by 0, so the hypothesis
of existence of lim

n→∞
yn and limn→∞

zn implies that lim
n→∞

xn exists too, as long as limn→∞
zn ≠ 1.

Here is one way to verify that lim
n→∞

zn ≠ 1. If x is an arbitrary real number, then

0 ≤ (x − 1)2 = x2 − 2x + 1, so 2x ≤ x2 + 1.

Adding x to both sides shows that 3x ≤ x2 + x + 1. As previously observed, the expression
x2 + x + 1 is positive, so the inequality is preserved by dividing both sides by 3(x2 + x + 1):
namely,

x
x2 + x + 1

≤ 1
3
.

Replacing x by xn reveals that zn ≤ 1∕3 for every natural number n, so certainly zn ≠ 1. Moreover,
limits preserve the weak order relation, so lim

n→∞
zn ≤ 1∕3; in particular, limn→∞

zn ≠ 1. This deduction
completes the proof.

Method 2. There is a theorem [Proposition 2.2.6] stating that if a sequence {an}∞n=1 converges,
and if an ≥ 0 for every n, then lim

n→∞

√

an =
√

lim
n→∞

an. Applying this statement to the convergent
sequence {yn}∞n=1 shows that the sequence {|xn|}∞n=1 converges.

Now consider three cases. If there exists some natural number M such that xn ≥ 0 whenever
n ≥ M , then the tail sequences {|xn|}∞n=M and {xn}∞n=M are identical. But theM-tail of a sequence
converges if and only if the whole sequence converges, so convergence of the sequence {|xn|}∞n=1
implies convergence of the sequence {xn}∞n=1.

Similarly, if there exists some natural number M such that xn ≤ 0 whenever n ≥ M , then
the same argument shows that the sequence {−xn}∞n=1 converges. The product theorem for limits
implies that the original sequence {xn}∞n=1 converges.

The third case is that neither of the two preceding situations holds. Negating the hypotheses of
the first two cases shows that for every natural number M , there is some value of n greater than
or equal to M for which xn < 0, and there is some other value of n greater than or equal to M
for which xn > 0. In other words, there is one subsequence of {xn}∞n=1 consisting of negative
numbers, and there is a second subsequence of {xn}∞n=1 consisting of positive numbers. Since
the denominator of zn is always positive, and the numerator of zn equals xn, the numbers zn
and xn have the same sign for every natural number n. Accordingly, there is one subsequence of
{zn}∞n=1 consisting of negative numbers, and there is a second subsequence of {zn}∞n=1 consisting
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of positive numbers. But the sequence {zn}∞n=1 converges by hypothesis, so every subsequence
of {zn}∞n=1 must have the same limit. Since taking limits preserves the weak order relation, the
value of lim

n→∞
zn is simultaneously ≤ 0 and ≥ 0, hence equal to 0.

What remains to do in the third case is to leverage the knowledge that lim
n→∞

zn = 0 to deduce that
lim
n→∞

xn exists and equals 0. Convergent sequences are in particular bounded [Proposition 2.1.7], so
the hypothesis of convergence of the sequence {yn}∞n=1 yields the existence of a positive numberB
such that x2n ≤ B, hence |xn| ≤

√

B, for every natural number n. The triangle inequality implies
that

|xn| =
|

|

|

zn
(

x2n + xn + 1
)

|

|

|

≤ |zn|
(

B +
√

B + 1
)

for every n.

The squeeze theorem (or the comparison theorem) now implies that lim
n→∞

xn = 0.
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