1. Compute $\frac{\partial^{2}}{\partial x \partial y} f(x-y, x y)$.
2. Define each of the following terms:
(a) $f(x, y) \in C^{1}$;
(b) $f(x, y)$ is homogeneous of degree $n$;
(c) the directional derivative of $f(x, y)$ in the direction $\xi_{\alpha}$ at a point $(a, b)$.
3. State
(a) the mean-value theorem for functions of two variables;
(b) any other interesting theorem from this course.
4. At the point $(2,1)$, the function $f(x, y)=x y+x \log y$ changes most rapidly in which direction? (You may specify the direction either as a vector $\left(v_{1}, v_{2}\right)$ or as an angle $\alpha$.)
5. Give an example of a function $f(x, y)$ defined on $\mathbb{R}^{2}$ such that the partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at all points, but $f$ is not continuous at the origin. Explain why your example works.
6. (a) Assume that the pair of equations

$$
\begin{aligned}
u^{2}+v^{2}-x y & =1 \\
u x-v y+u v & =\frac{1}{2}
\end{aligned}
$$

determines dependent variables $u$ and $v$ implicitly as functions of independent variables $x$ and $y$. Find $\frac{\partial u}{\partial x}$.
(b) Discuss the validity of the assumption in part (a) near the point where $x=0, y=0, u=1 / \sqrt{2}, v=1 / \sqrt{2}$.
7. (a) Find the Taylor expansion of $x y+\cos (2 y)$ in powers of $(x-2)$ and $(y-\pi)$ through the quadratic terms.
(b) Write the remainder in part (a) in as simple a form as you can.

