
Math 617 Final Examination
Theory of Functions of a Complex Variable I

Fall 2012

Instructions Please solve the following six problems (all of which are exercises excerpted
from the textbook). Treat these problems as essay questions: supporting explanation is required.

1. Find every complex number ´ satisfying the property that j´ � i j D 2´C i .

Solution. This problem is Exercise 1.21(a) on page 11, solved on page 235. The answer
is that ´ D 1

2
.
p
3 � i/.

2. Let ! denote e2�i=3, a cube root of 1. Let g.´/ denote the product

cos.´/ cos.!´/ cos.!2´/:

Show that when n is not a multiple of 3, the nth coefficient in the Maclaurin series of g is
equal to zero. In other words, there exists an entire function f such that g.´/ D f .´3/ for
every ´.

Solution. This problem is Exercise 4.22 on page 30, solved on page 247. Here is a
solution slightly different from the one in the textbook.

Evidently g.!´/ D g.´/ for every ´, since !3 D 1. Accordingly, if the Maclaurin series
for g.´/ is

P1

nD0 an´
n, then

1X
nD0

an!
n´n D

1X
nD0

an´
n for every ´:

Two power series agree identically if and only if the coefficients match, so an!n D an for
every n. Consequently, if an ¤ 0, then !n D 1, and this equality holds if and only if n is
a multiple of 3. Thus the series has the form

P1

kD0 a3k.´
3/k.

3. Let C be the circle with center 1 and radius 1 (oriented in the usual counterclockwise
direction and traversed once). Evaluate the line integralZ

C

1C ´

1 � ´
d´:

Solution. This problem is Exercise 5.5 on page 33, solved on page 248. The solution
in the book suggests parametrizing the integral, for Cauchy’s integral formula is not yet
known in Section 5. But you know more now, so you can apply either the integral formula
or the residue theorem to obtain the answer �4�i with almost no work. (The minus sign
appears because the denominator of the integrand is 1 � ´ instead of ´ � 1.)
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4. Suppose f is an entire function such thatZ 2�

0

jf .rei�/j d�

is a bounded function of the radius r . Show that f must be a constant function. (This
problem is a variation on Liouville’s theorem.)

Solution. This problem is Exercise 7.8 on page 50, solved on page 250.

5. Use the residue theorem to prove thatZ 1

0

1

x4 C 6x2 C 8
dx D

�.
p
2 � 1/

8
:

Solution. This problem is Exercise 9.2(c) on page 73, solved on page 256. The integral
actually can be evaluated by using techniques from first-year calculus, but using the residue
theorem is easier.

6. Determine the number of zeroes of the function 2i´2 C sin.´/ in the rectangle where
jRe.´/j � �=2 and j Im ´j � 1.
(You may find it useful to know that cosh.1/ < 1:6.)

Solution. This application of Rouché’s theorem is Exercise 12.3 on page 98, solved on
pages 268–269.

Optional bonus problem for extra credit

Let D denote C n Œ�1; 1�, the complex plane with the closed segment Œ�1; 1� of the real axis
removed. Is it possible to define a holomorphic branch of

p
´2 � 1 on D? In other words, does

there exist a holomorphic function f on D with the property that .f .´//2 D ´2 � 1 for every ´
in D? Explain why or why not.

Solution. There does exist such a function, but constructing it requires some care.
The first try—which fails—is to say that

p
´2 � 1 D expf1

2
log.´2 � 1/g, so it suffices to

construct log.´2 � 1/ on D. But there cannot exist a global holomorphic branch of log.´2 � 1/
on D. Indeed, if there were such a global holomorphic function, then its derivative would be
2´=.´2 � 1/, and the integral of this derivative around a closed path in D would be equal to 0.
Since Z

j´jD2

2´

´2 � 1
d´ D 4�i ¤ 0;
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the global existence of log.´2� 1/ onD is ruled out. The subtlety in the problem is that a global
holomorphic branch of

p
´2 � 1 can be constructed in D even though a global holomorphic

branch of log.´2 � 1/ does not exist.
An intuitive way to see why the required function should exist is to think of

p
´2 � 1 as

p
´ � 1

p
´C 1. Now

p
´ � 1 can be defined on C n .�1; 1�, and

p
´C 1 can be defined on

C n .�1;�1�. Both of these functions will be discontinuous across the segment .�1;�1/.
In each case, the discontinuity as ´ crosses this segment is merely a change in sign (since the
square root of a complex number has only two possible values, which are negatives of each
other). Consequently, when the functions

p
´ � 1 and

p
´C 1 are multiplied, the discontinuity

across the segment .�1;�1/ evaporates, for the two sign changes cancel each other out.
To construct the function more formally, let Sqrt.´/ denote the principal square root function

on C n .�1; 0�: namely, Sqrt.´/ D expf1
2

Log.´/g, where Log denotes the principal branch
of the logarithm function (determined by taking arg.´/ between �� and �). When ´ lies in
Cn .�1; 1�, the points ´�1 and ´C1 lie in Cn .�1; 0�, so the product Sqrt.´�1/Sqrt.´C1/
is a well-defined holomorphic function on C n .�1; 1� whose square equals ´2 � 1. On the
other hand, �Sqrt.´2 � 1/ is a well-defined holomorphic function on the intersection of D
with the open left-hand half-plane, for when ´ lies in this intersection, the point ´2 � 1 lies in
C n .�1; 0�. Moreover, the square of �Sqrt.´2 � 1/ evidently equals ´2 � 1. The claim now is
that the following definition solves the problem:

f .´/ D

(
Sqrt.´ � 1/Sqrt.´C 1/ when ´ 2 C n .�1; 1�,
�Sqrt.´2 � 1/ when ´ 2 D \ f ´ 2 C W Re.´/ < 0 g.

What needs to be checked is that the two clauses of the definition agree on the overlap of the
two indicated domains: namely, on the open second quadrant and on the open third quadrant.
When ´ lies in the open second quadrant, the point ´2 � 1 lies in the open lower half-plane, so
Sqrt.´2�1/ lies in the open fourth quadrant, and�Sqrt.´2�1/ lies in the open second quadrant.
If ´ lies in the open second quadrant, and additionally Re.´/ < �1, then both the points ´ � 1
and ´ C 1 lie in the open second quadrant, so both Sqrt.´ � 1/ and Sqrt.´ C 1/ have angles
between �=4 and �=2, whence the product Sqrt.´ � 1/Sqrt.´C 1/ lies in the second quadrant.
For such values of ´, the quantities Sqrt.´ � 1/Sqrt.´ C 1/ and �Sqrt.´2 � 1/ agree, for they
lie in the same quadrant and have the same square. The coincidence principle then implies that
Sqrt.´ � 1/Sqrt.´C 1/ D � Sqrt.´2 � 1/ for every ´ in the open second quadrant. Completely
analogous reasoning shows that Sqrt.´�1/Sqrt.´C1/ D �Sqrt.´2�1/ when ´ lies in the open
third quadrant.1 Thus the formula for f is well defined: the two cases agree at all points in the
intersection of the two domains.

1Applying the coincidence principle requires making separate arguments for the second quadrant and for the third
quadrant because the open set f ´ 2 C W Re.´/ < 0 g n .�1; 1� is disconnected.
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