Walking a dog

1862

Theorem (Perturbation version of Rouché's theorem). If f and g are analytic inside a simple closed curve γ , and |g(z)| < |f(z)| when z is \underline{on} the curve γ , then f and $f \pm g$ have the same number of zeroes inside γ .

have inside the unit circle? Take f/2) = 322 g(2) = 21 + 1 $|g(z)| \le 2 < 3 = |f(z)|$. Theorem implies that f(z) + g(z) has same # of zeroes inside as f(z): namely, 2.

Theorem (Symmetric version of Rouché's theorem). If f and g are analytic inside a simple closed curve γ , and |f(z) + g(z)| < |f(z)| + |g(z)| when z is **on** the curve γ , then f and g have the same number of zeroes inside γ .

Title: Dec 1 (Page 1 of 2)

Rouché's theorem on the qualifying exam

- August 2008 problem 6: If $\alpha > 1$, then the equation $\sin z = e^{\alpha} z^3$ has exactly three solutions in the unit disk.
- August 2009 problem 4: If a > 0 and b > 2, then the equation $az^3 z + b = e^{-z}(z + 2)$ has exactly two solutions in the right-hand half-plane. [same as problem 7, August 2014]
- August 2012 problem 7: If $\lambda > 1$, then the equation $e^z z = \lambda$ has exactly one solution in the left-hand half-plane.

Title: Dec 1 (Page 2 of 2)