Classification of isolated singularities

1. Removable singularity: f 1s bounded near the puncture. Equivalently, by Riemann’s

theorem, f has a finite limit at the puncture. Equivalently, the Laurent series has no
terms with negative exponents.

2. Pole: |f| — oo at the puncture. Equivalently, 1/f has a removable singularity with
value O at the puncture. Equivalently, the Laurent series has some, but finitely many,
terms with negative exponents.

3. Essential singularity: | | has neither a finite nor an infinite limit at the puncture. Equiv-
alently, the Laurent series has infinitely many terms with negative exponents.
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Some theorems about the range of an analytic function

Theorem (Casorati-Weierstrass). The range of an analytic function in a punctured neighbor-
hood of an essential singularity is dense in C.
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Theorem (Picard’s “great theorem” or “big theorem”™). In every punctured neighborhood of
an essential singularity, an analytic function assumes every complex value—with one possible

exception—infinitely often.
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August 2014 qualifying examination

2. a) Find and classify all isolated singularities of

2 &1 ‘ 1
fiz)y= z(—zr) and g(z) = (2* — 1) cos
sin” z z—

b) Find the residue of f at z = 27 and the residue of g at z = 1.
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