Characterization of continuity at a point ¢

f(z,)—= f(c) whenever

Z
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Equivalent definitions of differentiability at a point ¢
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exists.

2. There is a function g, continuous at ¢, such that f(z) — f(c) = g(z)(z — ¢).

3. There is a complex-linear transformation 7' : C — C such that

i B = f@)—Tz-c) _
im =

= -0

0.
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Real differentiability
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Linear transformation T is the Jacobian matrix
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of
Theorem. A function is complex-differentiable at a point in C if and only (the function is real-
differentiable at the point and the Cauchy—Riemann equations hold)at the point.

Theorem. A sufficient condition for real-differentiability is that the first-order partial deriva-
tives are continuous.
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Definition. A function defined on an open subset of C is analytic (or holomorphic) if the first-
order partial derivatives exist, are continuous, and satisfy the Cauchy—Riemann equations.
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Menshov

Theorem (P. Montel 1913, H. Looman 1923, D. Menchoff 1935). In the definition of analytic

function, the hypothesis of continuity of the partial derivatives can be weakened to continuity
of the function.
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Exercise from page 43

1. Show that f(z) = |z|* = x* + y? has a derivative only at the origin.

Exercise. Show that the function equal to z°/|z|* when z # 0 and equal to O when z = 0
is continuous, and the Cauchy—Riemann equations hold at the origin, but the function is not
complex-differentiable at the origin.
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