Cauchy-Riemann equations for f=u+iv
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Exercise from page 44 U= Cé‘/}]j“f—

14. Suppose f: G — C is analytic and that G is connected. Show that if
j‘;(z) 1s real for all z in G then f is constant.
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Wirtinger's notation, 1927
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Connections between harmonic functions and analytic functions

1. The real part of an analytic function is harmonic.

2. The converse is true  locally. (?)rc l/La é')c. CM Il’\j
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Some elementary functions
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Persistence of functional relations

(sin x)* + (cos x)*> = 1 for every real number x.

Is (sin z)?> + (cos z)? = 1 for every complex number z?
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| sin(x)| < 1 for every real number x.
Is | sin(z)| < 1 for every complex number z?
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Exercises from page 44

6. Describe the following sets: {z: & =i}, {z: & = —1}, {z: & = —i},
{z: cos z =0}, {z: sin z = 0}.

19. Let G be a region and define G* = {z: ze G}. If /: G — C is analytic
prove that f*: G* — C, defined by f*(z) = f(Z), 1s also analytic.
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