Cauchy's idea of 1814 f analytic
$0=\iint_{R} i\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) d x d y$

$=\int_{c}^{d}\left[f(b, y)-f(a, y) d z+\begin{array}{r}d y \\ d z=d x+i d y \\ a\end{array}\right.$
$=\int_{\partial R} f(z) d z$

Suppose $f\left(\begin{array}{l}\text { is analyicic exceptifor one singular point }, ~ s a y \\ g(z)\end{array}\right.$
$f(z)=\frac{g(z)}{z-z_{0}}$, where g analytic
Reduce to case of integration around a small square centered

$$
\begin{aligned}
\int_{\partial(\text { (square })} \frac{g(z)}{z-z_{0}} & d z \\
& =\int_{\partial(\text { square })}\left(\frac{g(z)-g\left(z_{0}\right)}{z-z_{0}}+\frac{g\left(z_{0}\right)}{z-z_{0}}\right) d z \\
& =\mathcal{E}(z)+g\left(z_{0}\right) \int_{\partial(\text { square })} \frac{1}{z-z_{0}} d z
\end{aligned}
$$

where $\varepsilon(z)$ is small because g is complex differentiable and the integration path is as short as desired.

$$
\begin{aligned}
& \text { The catuation restucesio } \quad \frac{1}{z}=\frac{1}{x+1 y} \cdot \frac{x-1 y}{x-i y} \\
& \int_{\partial(\text { suture })} \frac{x-i y}{x^{2}+y^{2}}(\underbrace{d x+i d y)}_{d z} \\
& \text { bottom edge } \\
& \int_{-\varepsilon} \frac{x+i \varepsilon}{x^{2}+\varepsilon^{2}} \\
& =0_{b y \text { symmetry }}^{-\varepsilon}+\int_{-\varepsilon}^{\varepsilon} \frac{i \varepsilon}{x^{2}+\varepsilon^{2}} d x \\
& u=x / \frac{1}{2} \int_{-1}^{1} \frac{i}{u^{2}+1} d u=\frac{\pi}{2} i
\end{aligned}
$$

other three integrals similar, so final answer is $2 \pi i$.

Cauchy's definition of residue (1826)

If $f(z)$ can be expanded near z_{0} in a series in powers of $\left(z-z_{0}\right)$ and $1 /\left(z-z_{0}\right)$, then the residue of f at z_{0} is the coefficient of $1 /\left(z-z_{0}\right)$.

Theorem (Cauchy's residue theorem for rectangles). If f is analytic except at isolated points inside a rectangle R, then

$$
\int_{\partial R} f(z) d z=2 \pi i \times(\text { sum of residues at the singular points }) .
$$

$$
\begin{aligned}
& \quad \int_{0}^{\infty} \frac{\cos (x)}{x^{2}+1} d x \\
& =\lim _{r \rightarrow \infty} \int_{0}^{r} \frac{\cos (x)}{x^{2}+1} d x=\frac{1}{2} \lim _{r \rightarrow \infty} \int_{-r}^{r} \frac{\cos (x)}{x^{2}+1} d x \\
& =\frac{1}{2} \operatorname{Re} \lim _{r \rightarrow \infty} \int_{-r}^{r} \frac{e^{i x}}{x^{2}+1} d x \\
& \text { Consider }\left.\lim _{\lim _{r \rightarrow \infty}} \frac{1}{2} \int_{\partial R} \frac{e^{i z}}{z^{2}+1} d z \frac{s}{-r}\right|_{r}>\underbrace{r}_{r} \\
& =2 \pi i \times \text { residue of } \frac{1}{2} \frac{e^{i t}}{z^{2}+1} \text { at } z=i
\end{aligned}
$$

Claim limit of extra integral's over three additional sides $=0$.

August 2012 qualifying examination

4. Apply the Residue Theorem to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\cos x d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}
$$

